EZR32LG Reference Manual

Preliminary

 Silicon Labs’ first 32-bit Wireless MCUs
» Based on ARM Cortex M3 CPU cores
» 256KB of Flash and 32KB RAM
» Best-in-class RF performance with EZradio and EZRadioPRO transceivers
e Ultra-low power wireless MCU
* Low transmit and receive currents
» Ultra-low power standby and sleep modes
* Fast wake-up time
* Low Energy sensor interface (LESENSE)
* Rich set of peripherals including 12-bit ADC and DAC, multiple communication
interfaces (USB, UART, LEUART, SPI, 12C), GPIO and timers
» AES Accelerator with 128/256-bit keys

The EZR32LG Wireless MCUs are the latest in Silicon Labs family of wireless

MCUs delivering a high performance, low energy wireless solution integrated

into a small form factor package. By combining a high performance sub-GHz RF
transceiver with an energy efficient 32-bit MCU, the EZR32LG family provides
designers the ultimate in flexibility with a family of pin-compatible devices that
scale with 64/128/256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO
transceivers. The ultra-low power operating modes and fast wake-up times of the
Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and
receive power consumption of the sub-GHz radio, result in a solution optimized for
battery powered applications.

®

SILICON LABS

®
t 2 R ...the world's most energy friendly wireless MCUs

1 Energy Friendly Wireless Microcontrollers

1.1 Typical Applications

The EZR32LG wireless microcontroller is the ideal choice for demanding 8-, 16-, and 32-bit energy
sensitive applications. These devices are developed to minimize the energy consumption by lowering
both the power and the active time, over all phases of MCU operation. This unique combination of ultra
low energy consumption and the performance of the 32-bit ARM Cortex-M3 processor, help designers
get more out of the available energy in a variety of applications.

Ultra low energy EZR32LG wireless microcontrollers are perfect for:

» Gas metering

* Energy metering
» Water metering

* Smart metering 3 @
e Alarm and security systems

» Health and fithess applications
* Industrial and home automation

1.2 EZR32L G Development

Because EZR32LG use the Cortex-M3 CPU, embedded designers benefit from the largest development
ecosystem in the industry, the ARM ecosystem. The development suite spans the whole design
process and includes powerful debug tools, and some of the world’s top brand compilers. Libraries with
documentation and user examples shorten time from idea to market.

The range of EZR32LG devices ensure easy migration and feature upgrade possibilities.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A F ...the world's most energy friendly wireless MCUs

2 About This Document

This document contains reference material for the EZR32LG series of wireless microcontrollers. All
modules and peripherals in the EZR32LG series devices are described in general terms. Not all modules
are present in all devices, and the feature set for each device might vary. Such differences, including
pin-out, are covered in the device-specific datasheets.

2.1 Conventions

Register Names

Register names are given as a module name prefix followed by the short register name:
TIMERNn_CTRL - Control Register

The "n" denotes the numeric instance for modules that might have more than one instance.
Some registers are grouped which leads to a group name following the module prefix:
GPIO_Px_DOUT - Port Data Out Register,

where x denotes the port instance (A,B,...).

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Multi-bit fields are denoted with
(x:y), where x is the start bit and y is the end bit.

Address

The address for each register can be found by adding the base address of the module (found in the
Memory Map), and the offset address for the register (found in module Register Map).

Access Type
The register access types used in the register descriptions are explained in Table 2.1 (p. 3) .

Table 2.1. Register Access Types

R Read only. Writes are ignored.

RW Readable and writable.

RW1 Readable and writable. Only writes to 1 have effect.

RW1H Readable, writable and updated by hardware. Only writes to
1 have effect.

w1 Read value undefined. Only writes to 1 have effect.

w Write only. Read value undefined.

RWH Readable, writable and updated by hardware.

Number format
Ox prefix is used for hexadecimal numbers.
Ob prefix is used for binary numbers.

Numbers without prefix are in decimal representation.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

Reserved

Registers and bit fields marked with reserved are reserved for future use. These should be written to O
unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value
The reset value denotes the value after reset.

Registers denoted with X have an unknown reset value and need to be initialized before use. Note
that, before these registers are initialized, read-modify-write operations might result in undefined register
values.

Pin Connections
Pin connections are given as a module prefix followed by a short pin name:
USn_TX (USARTnN TX pin)

The pin locations referenced in this document are given in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EZR32LG family and the ARM Cortex-M3 can be found at the Silicon
Laboratories and ARM web pages:

www.silabs.com

www.arm.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

) ©
t 2 R ...the world's most energy friendly wireless MCUs

3 System Overview

3.1 Introduction

The EZR32LG Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high
performance, low energy wireless solution integrated into a small form factor package. By combining
a high performance sub-1 GHz RF transceiver with an energy efficient 32-bit MCU, the EZR32LG
family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale
with 64/128/256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-
low power operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs,
combined with the low transmit and receive power consumption of the sub-1 GHz radio, result in a
solution optimized for battery powered applications, see Figure 3.1 (p. 5) .

3.2 Block Diagram

Figure 3.1 (p. 5) shows the block diagram of EZR32LG. The color indicates peripheral availability
in the different energy modes, described in Section 3.4 (p. 8) .

Figure 3.1. Block Diagram of EZR32LG

Core and Memory Clock Management Energy Management Security
ééx High FTET g&gh Freq Voltage Voltage
Memory . q Regulator Comparator Hardware
ARM Cortex™ M3 processor gqtection Oscillator Oscillator AES
nit

High Freq Low Freq Brown- out Power- on
Crystal RC Detector Reset
Oscillator Oscillator

Debug DMA

Interface Low Freq Ultra Low Fred Back- up
ol S Controller Crystal RC Power
Oscillator @ oOscillator Domain

Peripheral Reflex System
-

Transceiver) Serial Interfaces I/ O Ports Timers and Triggers Analog Interfaces
ASK, OOK, Timer/
142-1050 (G)FSK, USART [CoumiET LESENSE ADC
MHz 4(G)FSK
Low Energy’ Real Time
General i)
TX18 mA SPI - o External Purpose Himer Solnteh DAC Operational
@20 dBm Interrupts) |, o Pulse Watchdog Amplifier
RX 10 mA Counter Timer
m) :
Preamble el USB Al R”k ek Analog
Sense 5.4 mA | Sensitivity Reset Wakeup RTC Comparator
& DY -
Antenna
Diversity LTS
A J

Figure 3.2. Energy Mode Indicator

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Note

In the energy mode indicator, the numbers indicates Energy Mode, i.e EMO-EM4.

3.3 Features

3.3.1 MCU Features

ARM Cortex-M3 CPU platform
» High Performance 32-bit processor @ up to 48 MHz
* Memory Protection Unit
» Wake-up Interrupt Controller
Flexible Energy Management System
20 nA @ 3V Shutoff Mode
* 0.4 pA @ 3V Shutoff Mode with RTC
» 0.65 pA @ 3V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU
retention
* 0.95 HJA @ 3 V Deep Sleep Mode, including RTC with 32768 Hz oscillator, Power-on
Reset, Brown-out Detector, RAM and CPU retention
e 63 yA/MHz @ 3 V Sleep Mode
* 211 pA/MHz @ 3 V Run Mode, with code executed from flash
256/128/64 KB Flash
32 KB RAM
Up to 41 General Purpose I/O pins
» Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
» Configurable peripheral 1/0 locations
» 16 asynchronous external interrupts
» OQutput state retention and wake-up from Shutoff Mode
12 Channel DMA Controller
 Alternate/primary descriptors with scatter-gather/ping-pong operation
12 Channel Peripheral Reflex System
» Autonomous inter-peripheral signaling enables smart operation in low energy modes
Universal Serial Bus (USB)
* Fully USB 2.0 compliant
* On-chip PHY and embedded 5V to 3.3V regulator
Hardware AES with 128/256-bit Keys in 54/75 cycles
Communication interfaces
» 2x Universal Synchronous/Asynchronous Receiver/Transmitter
* UART/SPI/SmartCard (ISO 7816)/IrDA (USARTO0)/12S (USART1+USART?2)
 Triple buffered full/half-duplex operation
* 4-16 data bits
» 2x Universal Asynchronous Receiver/Transmitter
 Triple buffered full/half-duplex operation
» 8-9 data bits
» 2x Low Energy UART
» Autonomous operation with DMA in Deep Sleep Mode
. 2x I°C Interface with SMBus support
» Address recognition in Stop Mode
Timers/Counters
» 4x 16-bit Timer/Counter
» 3 Compare/Capture/PWM channels
» Dead-Time Insertion on TIMERO
* 16-bit Low Energy Timer
» 1x 24-bit and 1x 32-bit Real-Time Counter

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

» 3x 8/16-bit Pulse Counter
» Asynchronous pulse counting/quadrature decoding
» Watchdog Timer with dedicated RC oscillator @ 50 nA
» Backup Power Domain
» RTC and retention registers in a separate power domain, available in all energy modes
» Operation from backup battery when main power drains out
» Ultralow power precision analog peripherals
e 12-bit 1 Msamples/s Analog to Digital Converter
» 8 input channels and on-chip temperature sensor
* Single ended or differential operation
» Conversion tailgating for predictable latency
» 12-bit 500 ksamples/s Digital to Analog Converter
» 2 single ended channels/1 differential channel
» Up to 3 Operational Amplifiers
» Supports rail-to-rail inputs and outputs
» Programmable gain
» 2% Analog Comparator
» Programmable speed/current
» Capacitive sensing with up to 8 inputs
» Supply Voltage Comparator
» Ultra low power sensor interface
» Autonomous sensor monitoring in Deep Sleep Mode
» Wide range of sensors supported, including LC sensors and capacitive buttons

3.3.2 RF Features

e Frequency range = 142-1050 MHz
* Receive sensitivity =-133 dBm
* Modulation
* (G)FSK, 4(G)FSK, (G)MSK, OOK
* Max output power
¢ +20 dBm
e +16 dBm
* +13 dBm
* PA support for +27 or +30 dBm
* Low active power consumption
* 10/23 mA RX
18 mA TX at +10 dBm
* Preamble sense mode
» 6 MmA average RX current at 1.2 kbps
» 10 pA average RX current at 50 kbps and 1 sec sleep interval
» Fast preamble detection
» 1 byte preamble detection
» Datarate =100 bps to 1 Mbps
« Fast wake and hop times
» Power supply =1.8t0 3.8V
» Excellent selectivity performance
* 69 dB adjacent channel
e 79 dB blocking at 1 MHz
* Antenna diversity and T/R switch control
« Highly configurable packet handler
» TX and RX 64 byte FIFOs

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

» 129 bytes dedicated Tx or Rx

» Auto frequency control (AFC)

e Automatic gain control (AGC)

* Low battery detector

* Temperature sensor

* |IEEE 802.15.4g and WMBus compliant

 Suitable for FCC Part 90 Mask D, FCC part 15.247, 15,231, 15,249, ARIB T-108, T-96,
T-67, RCR STD-30, China regulatory

» ETSI Category | Operation EN300 220

3.3.3 System Features

» Ultra efficient Power-on Reset and Brown-Out Detector
Debug Interface
» 2-pin Serial Wire Debug interface
» 1-pin Serial Wire Viewer
» Embedded Trace Module v3.5 (ETM)
Temperature range -40 - 85°C
Single power supply 1.98 - 3.8V
Packages
* QFN64

3.4 Energy Modes

There are five different Energy Modes (EMO-EM4) in the EZR32LG, see Table 3.1 (p. 9). The
EZR32LG is designed to achieve a high degree of autonomous operation in low energy modes. The
intelligent combination of peripherals, RAM with data retention, DMA, low-power oscillators, and short
wake-up time, makes it attractive to remain in low energy modes for long periods and thus saving energy
consumption.

Tip

Throughout this document, the first figure in every module description contains an Energy Mode
Indicator showing which energy mode(s) the module can operate (see Table 3.1 (p. 9)).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Table 3.1. Energy Mode Description

Energy Mode Name Description

EMO — Energy Mode 0 In EMO, the CPU is running and consuming as little as 211 pA/MHz, when

©

1(2(3 . . .
(Run mode) running code from flash. All peripherals can be active.

A @ EM1 - Energy Mode 1 In EM1, the CPU is sleeping and the power consumption is only 63 pA/MHz.
(Sleep Mode) All peripherals, including DMA, PRS and memory system, are still available.

In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz
oscillator running, selected low energy peripherals (RTC, LETIMER, PCNT,
EM2 — Energy Mode 2 LEUART, I2C, LESENSE, OPAMP, USB, WDOG and ACMP) are sitill
(Deep Sleep Mode) available. This gives a high degree of autonomous operation with a current
consumption as low as 0.95 pA with RTC enabled. Power-on Reset, Brown-
out Detection and full RAM and CPU retention is also included.

In EM3, the low-frequency oscillator is disabled, but there is still full CPU
and RAM retention, as well as Power-on Reset, Pin reset, EM4 wake-up and
Brown-out Detection, with a consumption of only 0.65 pA. The low-power
ACMP, asynchronous external interrupt, PCNT, and 1°C can wake-up the
device. Even in this mode, the wake-up time is a few microseconds.

EM3 - Energy Mode 3
(Stop Mode)

In EM4, the current is down to 20 nA and all chip functionality is turned off

1 EM4 — Energy Mode 4 except the pin reset, GPIO pin wake-up, GPIO pin retention, Backup RTC
(Shutoff Mode) (including retention RAM) and the Power-On Reset. All pins are put into their

reset state.

3.5 Product Overview

Table 3.2 (p. 9) shows a device overview of the EZR32LG Wireless Microcontroller Series, including
peripheral functionality. For more information, the reader is referred to the device specific datasheets.

Table 3.2. EZR32LG Wireless Microcontroller Series

= =
IS (24 . -
° = + || = 2 o 2 & = Ic'll)J
R g Lo ¢ ¢ 2 3 5 7 z
) o) x < == 5 = =& 4 |
o = < D c — (@] = O (@) > n
o O w S | w | E S A < O ul
W O o S E a3 = < O < a
230F64 64 |32 a1 | - | - a|2]2]|2 1 13| e | A2 121y]| - | v | 3 |omes
(12) ® | (2 |(@16)
230F128 128 | 32 41 - - 4 2 2 4 1 1 3 1 1 2 2 Y - Y 3 QFN64
(12) (® | (2 |(@16)
230F256 56|32 |4 | - | -|al2]2]|2 1 13l a | EAL2120 v] -|v /|3 |oFnes
(12) @) |) | @16)
330F64 64 |32 |37 | v | -|al|2]2]|2 1 13| | A1 2121y]| - | v | 3 |omes
(12) ® | @ |12

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

= =
T o = -
- @ g = o 7la | 2 L
9 £ T E x o 2 2 3§ 7}
o = o uw T = = = =
[- o = s c 2 2 o
) 5 5 = s 2 = i,
N o %) € W 8 A < O i
W 3 O D> = O S < a < >
4 112 2
330F128 183237 | v | -|al2]|2 1 1|31 Y| - | v | 3 |oFNes
12) ® | @ | a2 Q
4 112 2
330F256 56|32 |37 | v | - | a]| 2|2 1 1|31 Yy | - | v | 3 |oFNes
12) ® | @ |12 Q

3.6 Device Revision

The device revision number is read from the ROM Table. The major revision number and the chip family
number is read from PIDO and PID1 registers. The minor revision number is extracted from the PID2 and
PID3 registers, as illustrated in Figure 3.3 (p. 10). The Fam[5:2] and Fam[1:0] must be combined

to complete the chip family number, while the Minor Rev[7:4] and Minor Rev[3:0] must be combined to
form the complete revision number.

Figure 3.3. Revision Number Extraction

PID2 (OXEOOFFFES8) PID3 (OXEOQOFFFEC)
31:8 7:4 3.0 31:8 7:4 3.0
Minor Rev[7:4] Minor Rev[3:0]
PIDO (0xEOOFFFEQ) PID1 (OXEOOFFFE4)
31:8 7:6 5:0 31:4 3:0
Fam[1:0]| Major Rev[5:0] Fam[5:2]

For the latest revision of the EZR32LG family, the chip family number is 0x02 and the major revision
number is 0x02. The minor revision number is to be interpreted according to Table 3.3 (p. 10) .

Table 3.3. Minor Revision Number Interpretation

Minor Rev[7:0] Revision

0x00 A

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

4 Radio Overview

The EZR32LG family of devices is built using high-performance, low-current EZRadio and EZRadioPRO
RF transceivers covering the sub-GHz frequency bands from 142 to 1050 MHz. These devices offer
outstanding sensitivity of upto -133 dBm (using EZRadioPRO) while achieving extremely low active and
standby current consumption. The EZR32LG devices using the EZRadioPRO transceiver offer frequency
coverage in all major bands and include optimal phase noise, blocking, and selectivity performance for
narrow band and licensed band applications, such as FCC Part 90 and 169 MHz wireless M-Bus. The
69 dB adjacent channel selectivity with 12.5 kHz channel spacing ensures robust receive operation in
harsh RF conditions, which is particularly important for narrow band operation. The active mode TX
current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with extremely low standby
current and fast wake times is optimized for extended battery life in the most demanding applications.
The EZR32LG devices can achieve up to +27 dBm output power with built-in ramping control of a low-
cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI, and ARIB. All
devices are designed to be compliant with 802.15.4g and Wireless M-Bus smart metering standards.
The devices are highly flexible and can be programmed and configured via Simplicity Studio, available
at www.silabs.com.

4.1 EZRadioPRO Overview

4.1.1 Introduction

Silicon Laboratories' EZRadioPRO devices are high-performance, low-current RF transceivers covering
the sub-GHz frequency bands from 142 to 1050 MHz. All parts offer outstanding sensitivity of -129
dBm while achieving extremely low active and standby current consumption. EZRadioPRO devices
offers frequency coverage in all major bands. The EZRadioPRO devices includes optimal phase noise,
blocking, and selectivity performance for narrow band and wireless M-Bus licensed band applications,
such as FCC Part90 and 169 MHz wireless M-Bus. The 69 dB adjacent channel selectivity with 12.5 kHz
channel spacing ensures robust receive operation in harsh RF conditions, which is particularly important
for narrow band operation. The EZRadioPRO devices offers exceptional output power of up to +20 dBm
with outstanding TX efficiency. The high output power and sensitivity results in an industry-leading link
budget of 146 dB allowing extended ranges and highly robust communication links. The EZRadioPRO
active mode TX current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with
extremely low standby current and fast wake times ensure extended battery life in the most demanding
applications. The EZRadioPRO devices can achieve up to +27 dBm output power with built-in ramping
control of a low-cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI,
wireless M-Bus, and ARIB. All devices are designed to be compliant with 802.15.4g and Wireless M-
Bus smart metering standards.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

Figure 4.1. EZRadioPRO Block Diagram

GPIO3 GPIO2 XIN XOUT
U U
Loop | g PFD / CP
Filter [~]
» Frac- N Div 30 MHz XO
} ' Bootup |
| O |
SDN =
RE IF
PKDET PK‘DEF
@ T > MODEM Q= NS
RXP LNA PGA aoc || FIFO g5 |
RXN = s ,Packetoga’{SDo
@ -\ e > Handler =2 g"{ SCLK
& 31— nIRQ
PowerRamp LDOs .
X L
Cntl POR Digital
PL\ LBD Logic
LDO 32K LP
0OSC
TXRAMP VDD GPIO0O GPIO1

4.1.2 Functional Description

The EZRadioPRO devices are high-performance, low-current, wireless ISM transceivers that cover the
sub-GHz bands. The wide operating voltage range of 1.8-3.8 V and low current consumption make
the EZRadioPRO an ideal solution for battery powered applications. The EZRadioPRO operates as
a time division duplexing (TDD) transceiver where the device alternately transmits and receives data
packets. The device uses a single-conversion mixer to downconvert the 2/4-level FSK/GFSK or OOK
modulated receive signal to a low IF frequency. Following a programmable gain amplifier (PGA) the

signal is converted to the digital domain by a high performance AZ ADC allowing filtering, demodulation,
slicing, and packet handling to be performed in the built-in DSP increasing the receiver’s performance
and flexibility versus analog based architectures. The demodulated signal is output to the system MCU
through a programmable GPIO or via the standard SPI bus by reading the 64-byte RX FIFO.

A single high precision local oscillator (LO) is used for both transmit and receive modes since the
transmitter and receiver do not operate at the same time. The LO is generated by an integrated VCO and

A% Fractional-N PLL synthesizer. The synthesizer is designed to support configurable data rates from
100 bps to 1 Mbps. The EZRadioPRO devices operate in the frequency bands of 142-175, 283-350,
350-525, and 850-1050 MHz with a maximum frequency accuracy step size of 28.6 Hz. The transmit

FSK data is modulated directly into the AZ data stream and can be shaped by a Gaussian low-pass filter
to reduce unwanted spectral content.

The EZRadioPRO contains a power amplifier (PA) that supports output power up to +20 dBm with
very high efficiency, consuming only 70 mA at 169 MHz and 85 mA at 915 MHz. The integrated +20
dBm power amplifier can also be used to compensate for the reduced performance of a lower cost,
lower performance antenna or antenna with size constraints due to a small form-factor. Competing
solutions require large and expensive external PAs to achieve comparable performance. EZRadioPRO is
designed to support single coin cell operation with current consumption below 18 mA for +10 dBm output
power. Two match topologies are available for the EZRadioPRO, class-E and switched-current. Class-

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

E matching provides optimal current consumption, while switched-current matching demonstrates the
best performance over varying battery voltage and temperature with slightly higher current consumption.
The PA is single-ended to allow for easy antenna matching and low BOM cost. The PA incorporates
automatic ramp-up and ramp-down control to reduce unwanted spectral spreading. The EZRadioPRO
family supports frequency hopping, TX/RX switch control, and antenna diversity switch control to extend
the link range and improve performance. Built-in antenna diversity and support for frequency hopping can
be used to further extend range and enhance performance. Antenna diversity is completely integrated
into the EZRadioPRO and can improve the system link budget by 8-10 dB, resulting in substantial
range increases under adverse environmental conditions. A highly configurable packet handler allows
for autonomous encoding/decoding of nearly any packet structure. Additional system features, such
as an automatic wake-up timer, low battery detector, 64 byte TX/RX FIFOs, and preamble detection,
reduce overall current consumption and allows for the use of lower-cost system MCUs. An integrated
temperature sensor, power-on-reset (POR), and GPIOs further reduce overall system cost and size.

4.1.3 Controller Interface

4.1.3.1 Serial Peripheral Interface (SPI)

The EZRadioPRO communicates with the EFM32LG MCU over a standard 4-wire serial peripheral
interface (SPI): SCLK, SDI, SDO, and nSEL. The SPI interface is designed to operate at a maximum
of 10 MHz. The SPI timing parameters are demonstrated in Table 4.1 (p. 13). The host MCU writes
data over the SDI pin and can read data from the device on the SDO output pin. Table 4.1 (p. 13)
demonstrates an SPI write command. The nSEL pin should go low to initiate the SPI command. The first
byte of SDI data will be one of the firmware commands followed by n bytes of parameter data which will
be variable depending on the specific command. The rising edges of SCLK should be aligned with the
center of the SDI data. For details regarding pin setup, see datasheet for the specific part.

Table 4.1. Serial Interface Timing Parameters

tCH Clock high time 40

tCL Clock low time 40

tDS Data setup time 20

tDH Data hold time 20

tDD Output data delay time 43
tDE Output disable time 45
tSS Select setup time 20

tSH Select hold time 50

tSW Select high period 80

Note

CL =10 pF; VDD = 1.8 V; SDO Drive strength setting = 10.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

Figure 4.2. Serial Interface Timing

SCLK
tss ten tos |to oo tsn toe
SDN X
SDO
ten tsw
nSEL /“ \

Figure 4.3. SPI Write Command

nSEL _L J_

SDO

SDI < FWCommand X ParamByte0 = = = = { ParamByten >

The EZRadioPRO contains an internal MCU which controls all the internal functions of the radio. For SPI
read commands a typical MCU flow of checking clear-to-send (CTS) is used to make sure the internal
MCU has executed the command and prepared the data to be output over the SDO pin. Figure 4.4 (p.
15) demonstrates the general flow of an SPI read command. Once the CTS value reads FFh then
the read data is ready to be clocked out to the host MCU. The typical time for a valid FFh CTS reading is
20 pus. Figure 4.5 (p. 15) demonstrates the remaining read cycle after CTS is set to FFh. The internal
MCU will clock out the SDO data on the negative edge so the host MCU should process the SDO data
on the rising edge of SCLK.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

Figure 4.4. SPI Read Command - Check CTS Value

Firmware Flow

OxFF .
Send Command ——— Read CTS Rzitpr:)er:l:e
0x00
NSEL |
SDO (CTS >
oI { ReadCmdBuff >
SCK
Figure 4.5. SPI Read Command - Clock Out Read Data
NSEL B

SDO < Response Byte 0 > . o < Response Byte n >

The fast response registers are registers that can be read immediately without the requirement to monitor
and check CTS. There are four fast response registers that can be programmed for a specific function.
The fast response registers can be read through APl commands, 0x50 for Fast Response A, 0x51 for
Fast Response B, 0x53 for Fast Response C, and 0x57 for Fast Response D. The fast response registers
can be configured by the “FRR_CTL_X_ MODE" properties.

4.1.3.2 Fast Response Registers

The fast response registers are registers that can be read immediately without the requirement to monitor
and check CTS. There are four fast response registers that can be programmed for a specific function.
The fast response registers can be read through APl commands, 0x50 for Fast Response A, 0x51 for
Fast Response B, 0x53 for Fast Response C, and 0x57 for Fast Response D. The fast response registers
can be configured by the “FRR_CTL_X_ MODE" properties.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

4.1.3.3 Operating Modes and Timing

The primary states of the EZRadioPRO are shown in Figure 4.6 (p. 16) . The shutdown state
completely shuts down the radio to minimize current consumption. Standby/Sleep, SPI Active, Ready,
TX Tune, and RX tune are available to optimize the current consumption and response time to RX/
TX for a given application. APl commands START_RX, START_TX, and CHANGE_STATE control the
operating state with the exception of shutdown which is controlled by SDN, pin 1. Table 4.2 (p. 16)
shows each of the operating modes with the time required to reach either RX or TX mode as well as the
current consumption of each mode. The times in Table 4.1 (p. 13) are measured from the rising edge
of nSEL until the chip is in the desired state. Note that these times are indicative of state transition timing
but are not guaranteed and should only be used as a reference data point. An automatic sequencer will
put the chip into RX or TX from any state. It is not necessary to manually step through the states. To
simplify the diagram it is not shown but any of the lower power states can be returned to automatically
after RX or TX.

Figure 4.6. State Machine Diagram

Table 4.2. Operating State Response Time and Current Consumption

Shutdown State 15ms 15 ms 30 nA

Standby State 440 ps 440 ps 40 nA

Sleep State 440 ps 440 ps 740 nA

SPI Active State 340 ps 340 ps 1.35 mA

Ready State 100 ps 100 ps 1.8 mA

TX Tune State 58 ps 7.8 mA

RX Tune State 60 ps 7.6 mA

TX State 100 ps 18 mA @ +10 dBm
RX State 100 us 75 ps 10.9 or 13.7 mA
Note

TX - RX and RX - TX state transition timing can be reduced to 70 ps if using Zero-IF mode.

Figure 4.7 (p. 17) shows the POR timing and voltage requirements. The power consumption (battery
life) depends on the duty cycle of the application or how often the part is in either Rx or Tx state. In most
applications the utilization of the standby state will be most advantageous for battery life but for very
low duty cycle applications shutdown will have an advantage. For the fastest timing the next state can
be selected in the START_RX or START_TX APl commands to minimize SPI transactions and internal
MCU processing.

4.1.3.3.1 Power on Reset (POR)

A Power On Reset (POR) sequence is used to boot the device up from a fully off or shutdown state. To
execute this process, VDD must ramp within 1ms and must remain applied to the device for at least 10
ms. If VDD is removed, then it must stay below 0.15 V for at least 10 ms before being applied again.
See Figure 4.7 (p. 17) and Table 4.3 (p. 17) for details.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Figure 4.7. POR Timing Diagram

Vop
VRRH \ [
VRRL
Time
tsr | trory
B
Table 4.3. POR Timing
tPORH High time for VDD to fully settle POR circuit 10 ms
tPORL Low time for VDD to enable POR 10 ms
VRRH Voltage for successful POR 90% x Vvdd \%
VRRL Starting Voltage for successful POR 0 150 mV
tSR Slew rate of VDD for successful POR 1 ms

4.1.3.3.2 Shutdown State

The shutdown state is the lowest current consumption state of the device with nominally less than 30
nA of current consumption. The shutdown state may be entered by driving the SDN pin (Pin 1) high.
The SDN pin should be held low in all states except the shutdown state. In the shutdown state, the
contents of the registers are lost and there is no SPI access. When coming out of the shutdown state a
power on reset (POR) will be initiated along with the internal calibrations. After the POR the POWER_UP
command is required to initialize the radio. The SDN pin needs to be held high for at least 10us before
driving low again so that internal capacitors can discharge. Not holding the SDN high for this period of
time may cause the POR to be missed and the device to boot up incorrectly. If POR timing and voltage
requirements cannot be met, it is highly recommended that SDN be controlled using the host processor
rather than tying it to GND on the board.

4.1.3.3.3 Standby State

Standby state has the lowest current consumption with the exception of shutdown but has much faster
response time to RX or TX mode. In most cases standby should be used as the low power state. In this
state the register values are maintained with all other blocks disabled. The SPI is accessible during this
mode but any SPI event, including FIFO R/W, will enable an internal boot oscillator and automatically
move the part to SPI active state. After an SPI event the host will need to re-command the device back
to standby through the “Change State” APl command to achieve the 40 nA current consumption. If an
interrupt has occurred (i.e., the nIRQ pin = 0) the interrupt registers must be read to achieve the minimum
current consumption of this mode.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

4.1.3.3.4 Sleep State

Sleep state is the same as standby state but the wake-up-timer and a 32 kHz clock source are enabled.
The source of the 32 kHz clock can either be an internal 32 kHz RC oscillator which is periodically
calibrated or a 32 kHz oscillator using an external XTAL.The SPI is accessible during this mode but an
SPI event will enable an internal boot oscillator and automatically move the part to SPI active mode. After
an SPI| event the host will need to re-command the device back to sleep. If an interrupt has occurred
(i.e., the nIRQ pin = 0) the interrupt registers must be read to achieve the minimum current consumption
of this mode.

4.1.3.3.5 SPI Active State

In SPI active state the SPI and a boot up oscillator are enabled. After SPI transactions during either
standby or sleep the device will not automatically return to these states. A “Change State” APl command
will be required to return to either the standby or sleep modes.

4.1.3.3.6 Ready State

Ready state is designed to give a fast transition time to TX or RX state with reasonable current
consumption. In this mode the Crystal oscillator remains enabled reducing the time required to switch
to TX or RX mode by eliminating the crystal start-up time.

4.1.3.3.7 TX State

The TX state may be entered from any of the state with the “Start TX” or “Change State” APl commands.
A built-in sequencer takes care of all the actions required to transition between states from enabling the
crystal oscillator to ramping up the PA. The following sequence of events will occur automatically when
going from standby to TX state.

» Enable internal LDOs.

 Start up crystal oscillator and wait until ready (controlled by an internal timer).

e Enable PLL.

» Calibrate VCO/PLL.

» Wait until PLL settles to required transmit frequency (controlled by an internal timer).

» Activate power amplifier and wait until power ramping is completed (controlled by an internal timer).
e Transmit packet.

Steps in this sequence may be eliminated depending on which state the chip is configured to prior to
commanding to TX. By default, the VCO and PLL are calibrated every time the PLL is enabled. When
the START_TX API command is utilized the next state may be defined to ensure optimal timing and
turnaround.

Figure 4.8 (p. 19) shows an example of the commands and timing for the START_TX command. CTS
will go high as soon as the sequencer puts the part into TX state. As the sequencer is stepping through
the events listed above, CTS will be low and no new commands or property changes are allowed. If the
Fast Response (FRR) or nIRQ is used to monitor the current state there will be slight delay caused by
the internal hardware from when the event actually occurs to when the transition occurs on the FRR or
nIRQ. The time from entering TX state to when the FRR will update is 5 us and the time to when the
nIRQ will transition is 13 ps. If a GPIO is programmed for TX state or used as control for a transmit/
receive switch (TR switch) there is no delay.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

Figure 4.8. Start_TX Commands and Timing

I I I I I
ors | | T T T T
I I I I I
I I I I I I I
T T T T T
NSE- :_\—l I I I I I
I I I I I I I
I (I I I I I I
SDI START_TX T T T T T
I I I I I I
1 I 1 1 I 1

Current State YYY State >< Tx State X TXCOMPLETE_STATE

T | T T | T
1 1 | 1 1 |

FRR YYY Sate X Tx Sate X TXCOMPLETE_STATE

nIRQ

GPIOx — TX state

o mm R mAC -

4.1.3.3.8 RX State

The RX state may be entered from any of the other states by using the “Start RX” or “Change State”
API command. A built-in sequencer takes care of all the actions required to transition between states.
The following sequence of events will occur automatically to get the chip into RX mode when going from
standby to RX state:

« Enable the digital LDO and the analog LDOs.

 Start up crystal oscillator and wait until ready (controlled by an internal timer).

» Enable PLL.

» Calibrate VCO.

» Wait until PLL settles to required receive frequency (controlled by an internal timer).
* Enable receiver circuits: LNA, mixers, and ADC.

» Enable receive mode in the digital modem.

Depending on the configuration of the radio, all or some of the following functions will be performed

automatically by the digital modem: AGC, AFC (optional), update status registers, bit synchronization,
packet handling (optional) including sync word, header check, and CRC. Similar to the TX state, the next
state after RX may be defined in the “Start RX” APl command. The START_RX commands and timing
will be equivalent to the timing shown in Figure 4.8 (p. 19) .

4.1.3.4 Application Programming Interface (API)

An application programming interface (API), which the host MCU will communicate with, is embedded
inside the device. The API is divided into two sections, commands and properties. The commands are
used to control the chip and retrieve its status. The properties are general configurations which will
change infrequently. The API descriptions can be found on the Silicon Labs website.

4.1.3.5 Interrupts

The EZRadioPRO is capable of generating an interrupt signal when certain events occur. The chip
notifies the microcontroller that an interrupt event has occurred by setting the nIRQ output pin LOW = 0.
This interrupt signal will be generated when any one (or more) of the interrupt events (corresponding to
the Interrupt Status bits) occur. The nIRQ pin will remain low until the microcontroller reads the Interrupt
Status Registers. The nIRQ output signal will then be reset until the next change in status is detected.

The interrupts sources are grouped into three groups: packet handler, chip status, and modem. The
individual interrupts in these groups can be enabled/disabled in the interrupt property registers. An
interrupt must be enabled for it to trigger an event on the nIRQ pin. The interrupt group must be enabled
as well as the individual interrupts in API properties described in the API documentation.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

Once an interrupt event occurs and the nIRQ pin is low there are two ways to read and clear the interrupts.
All of the interrupts may be read and cleared in the “GET_INT_STATUS” APl command. By default all
interrupts will be cleared once read. If only specific interrupts want to be read in the fastest possible
method the individual interrupt groups (Packet Handler, Chip Status, Modem) may be read and cleared
by the “GET_MODEM_STATUS”, “GET_PH_STATUS” (packet handler), and “GET_CHIP_STATUS”
APl commands.

The instantaneous status of a specific function maybe read if the specific interrupt is enabled or disabled.
The status results are provided after the interrupts and can be read with the same commands as the
interrupts. The status bits will give the current state of the function whether the interrupt is enabled or not.

The fast response registers can also give information about the interrupt groups but reading the fast
response registers will not clear the interrupt and reset the nIRQ pin.

4.1.3.6 GPIO

Four general purpose IO pins are available to utilize in the application. The GPIO are configured by the
GPIO_PIN_CFG command in address 13h. For a complete list of the GPIO options please see the API
guide. GPIO pins 0 and 1 should be used for active signals such as data or clock. GPIO pins 2 and 3
have more susceptibility to generating spurious in the synthesizer than pins 0 and 1. The drive strength
of the GPIOs can be adjusted with the GEN_CONFIG parameter in the GPIO_PIN_CFG command.
By default the drive strength is set to minimum. The default configuration for the GPIOs and the state
during SDN is shown below in Table 4.4 (p. 20).The state of the IO during shutdown is also shown
in Table 4.4 (p. 20) .

Table 4.4. Energy Mode Description

GPIOO 0 POR
GPIO1 0 CTS
GPIO2 0 POR
GPIO3 0 POR
niRQ resistive VDD pull-up nIRQ
SDO resistive VDD pull-up SDO
SDI High Z SDI
SCLK High Z SCLK
NSEL High Z NSEL

4.1.4 Modulation and Hardware Configuration Options

The EZRadioPRO supports different modulation options and can be used in various configurations to
tailor the device to any specific application or legacy system for drop in replacement. The modulation and
configuration options are set in API property, MODEM_MOD_TYPE. Refer to the APl documentation
for details on modem related properties.

4.1.4.1 Modulation Types

The EZRadioPRO supports five different modulation options: Gaussian frequency shift keying (GFSK),
frequency-shift keying (FSK), four-level GFSK (4GFSK), four-level FSK (4FSK), and on-off keying
(OOK). Minimum shift keying (MSK) can also be created by using GFSK with the appropriate modulation
index (h = 0.5). GFSK is the recommended modulation type as it provides the best performance
and cleanest modulation spectrum. The modulation type is set by the “MOD_TYPE[2:0]” field in the
“MODEM_MOD_TYPE" API property. A continuous-wave (CW) carrier may also be selected for RF

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

evaluation purposes. The modulation source may also be selected to be a pseudo-random source for
evaluation purposes.

4.1.4.2 Hardware Configuration Options

There are different receive demodulator options to optimize the performance and mutually-exclusive
options for how the RX/TX data is transferred from the host MCU to the RF device.

4.1.4.2.1 Receive Demodulator Options

There are multiple demodulators integrated into the device to optimize the performance for different
applications, modulation formats, and packet structures. The calculator built into Simplicity Studio will
choose the optimal demodulator based on the input criteria.

4.1.4.2.2 Synchronous Demodulator

The synchronous demodulator's internal frequency error estimator acquires the frequency error based
on a 101010 preamble structure. The bit clock recovery circuit locks to the incoming data stream within
four transactions of a “10” or “01” bit stream. The synchronous demodulator gives optimal performance
for 2- or 4-level (G)FSK modulation that has a modulation index less than 2.

4.1.4.2.3 Asynchronous Demodulator

The asynchronous demodulator should be used for OOK modulation and for (G)FSK modulation under
one or more of the following conditions:

Modulation index = 2
* Non-standard preamble (not 1010101... pattern)

When the modulation index exceeds 2, the asynchronous demodulator has better sensitivity compared
to the synchronous demodulator. An internal deglitch circuit provides a glitch-free data output and a data
clock signal to simplify the interface to the host. There is no requirement to perform deglitching in the
host MCU. The asynchronous demodulator will typically be utilized for legacy systems and will have
many performance benefits over devices used in legacy designs. There is no requirement to perform
deglitching on the data in the host MCU. Glitch-free data is output from EZRadioPRO devices, and a
sample clock for the asynchronous data can also be supplied to the host MCU; so, oversampling or bit
clock recovery is not required by the host MCU. There are multiple detector options in the asynchronous
demodulator block, which will be selected based upon the options entered into the SS calculator. The
asynchronous demodulator's internal frequency error estimator is able to acquire the frequency error
based on any preamble structure.

4.1.4.2.4 RX/TX Data Interface With MCU

There are two different options for transferring the data from the RF device to the host MCU. FIFO mode
uses the SPI interface to transfer the data, while direct mode transfers the data in real time over a GPIO

pin.
4.1.4.2.4.1 FIFO Mode

In FIFO mode, the transmit and receive data is stored in integrated FIFO register memory. The TX FIFO
is accessed by writing command 66h followed directly by the data/clk that the host wants to write into the
TX FIFO. The RX FIFO is accessed by writing command 77h followed by the number of clock cycles of
data the host would like to read out of the RX FIFO. The RX data will be clocked out onto the SDO pin.

In TX FIFO mode, the data bytes stored in FIFO memory are “packaged” together with other fields
and bytes of information to construct the final transmit packet structure. These other potential fields
include the Preamble, Sync word, and CRC checksum. In TX mode, the packet structure may be

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ‘j ...the world's most energy friendly wireless MCUs

highly customized by enabling or disabling individual fields; for example, it is possible to disable both
the Preamble and Sync Word fields and to load the entire packet structure into FIFO memory. For
further information on the configuration of the FIFOs for a specific application or packet size, see
Section 4.1.6 (p. 33). In RX mode, the Packet Handler must be enabled to allow storage of
received data bytes into RX FIFO memory. The Packet Handler is required to detect the Sync Word,
and proper detection of the Sync Word is required to determine the start of the Payload. All bytes
after the Sync Word are stored in RX FIFO memory except the CRC checksum and (optionally) the
variable packet length byte(s). When the FIFO is being used in RX mode, all of the received data
may still be observed directly (in realtime) by properly programming a GPIO pin as the RXDATA
output pin; this can be quite useful during application development. When in FIFO mode, the chip will
automatically exit the TX or RX State when either the PACKET_SENT or PACKET_RX interrupt occurs.
The chip will return to the state programmed in the argument of the “START TX” or “START RX” API
command, TXCOMPLETE_STATE[3:0] or RXVALID_STATE[3:0]. For example, the chip may be placed
into READY mode after a TX packet by sending the “START TX" command and by writing 30h to the
TXCOMPLETE_STATE[3:0] argument. The chip will transmit all of the contents of the FIFO, and the
PACKET_SENT interrupt will occur. When this event occurs, the chip will return to the READY state as
defined by TXCOMPLETE_STATE[3:0] = 30h.

4.1.4.2.4.2 FIFO Direct Mode (Infinite Receive)

In some applications, there is a need to receive extremely long packets (greater than 40 kB) while relying
on preamble and sync word detection from the on-chip packet handler. In these cases, the packet length
is unknown, and the device will load the bits after the sync word into the RX FIFO forever. Other features,
such as Data Whitening, CRC, Manchester, etc., are supported in this mode, but CRC calculation is not
because the end of packet is unknown to the device. The RX data and clock are also available on GPIO
pins. The host MCU will need to reset the packet handler by issuing a START_RX to begin searching
for a new packet.

4.1.4.2.4.3 Automatic TX Packet Repeat

In TX mode, there is an option to send the FIFO contents repeatedly with a user-defined number of times
to repeat. This is limited to the FIFO size, and the entire contents of the packet including preamble and
sync word need to be loaded into the TX FIFO. This is selectable via the START_TX API, and packets
will be sent without any gaps between them.

4.1.4.2.4.4 Direct Mode

For legacy systems that perform packet handling within the host MCU or other baseband chip, it may
not be desirable to use the FIFO. For this scenario, a Direct mode is provided, which bypasses the
FIFOs entirely. In TX Direct mode, the TX modulation data is applied to an input pin of the chip and
processed in “real time” (i.e., not stored in a register for transmission at a later time). Any of the
GPIOs may be configured for use as the TX Data input function. Furthermore, an additional pin may
be required for a TX Clock output function if GFSK modulation is desired (only the TX Data input pin
is required for FSK or OOK). To achieve direct mode, the desired GPIO pin must be configured as a
digital input by setting the GPIO_PIN_CFG APl command = enumeration 0x04 in addition to setting the
MODEM_MOD_TYPE API property to source the TXDATA stream from that same GPIO pin. For GFSK,
“TX_DIRECT_MODE_TYPE” must be set to synchronous. For 2FSK or OOK, the type can be set to
asynchronous or synchronous. The MOD_SOURCE([1:0] field within the MODEM_MOD_TYPE property
should be set = 0x01h for all Direct mode configurations. In RX Direct mode, the RX Data and RX Clock
can be programmed for direct (real-time) output to GPIO pins. The microcontroller may then process the
RX data without using the FIFO or packet handler functions of the RFIC.

4.1.4.3 Preamble Length
4.1.4.3.1 Digital Signal Arrival Detector (DSA)

Traditional preamble detection requires 20 bits to detect preamble. This device introduces a new
approach to signal detection that can detect a preamble pattern in as little as one byte. If AFC is enabled,

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

a preamble length of two bytes is sufficient to reliably detect signal arrival and settle a one-shot AFC. The
impact of this is significant for low-power solutions as it reduces the amount of time the receiver has to
stay active to detect the preamble. This feature is used with Preamble Sense Mode (Section 4.1.8.6 (p.
37)) and the latest Wireless M-Bus N modes as well as with features, such as frequency hopping,
which may use signal arrival as a condition to hop. The traditional preamble detector is also available
to maintain backward compatibility. Note that the DSA is using the RSSI jump detector. When used for
collision detection, the RSSI jump detector may need to be reconfigured after preamble detection. Refer
to the API documentation for details on how to configure the device to use the signal arrival detector.

...the world's most energy friendly wireless MCUs

4.1.4.3.2 Traditional Preamble Detection

Optimal performance of the chip is obtained by qualifying reception of a valid Preamble pattern prior
to continuing with reception of the remainder of the packet (e.g., Sync Word and Payload). Reception
of the Preamble is considered valid when a minimum number of consecutive bits of 101010... pattern
have been received; the required threshold for preamble detection is specified by the RX_THRESH][6:0]
field in the PREAMBLE_CONFIG_STD_1 property. The appropriate value of the detection threshold
depends upon the system application and typically trades off speed of acquisition against the probability
of false detection. If the detection threshold is set too low, the chip may readily detect the short pattern
within noise; the chip then proceeds to attempt to detect the remainder of the non-existent packet, with
the result that the arrival of an actual valid packet may be missed. If the detection threshold is set too
high, the required number of transmitted Preamble bits must be increased accordingly, leading to longer
packet lengths and shorter battery life. A preamble detection threshold value of 20 bits is suitable for
most applications. The total length of the transmitted Preamble field must be at least equal to the receive
preamble detection threshold, plus an additional number of bits to allow for acquisition of bit timing and
settling of the AFC algorithm. The recommended preamble detection thresholds and preamble lengths
for a variety of operational modes are listed in Table 4.5 (p. 23) .

Configuration of the preamble detection threshold in the RX_THRESHI[6:0] field is only required
for reception of a standard Preamble pattern (i.e., 101010... pattern). Reception of a repetitive
but non-standard Preamble pattern is also supported in the chip but is configured through the
PREAMBLE_CONFIG_NSTD and PREAMBLE_PATTERN properties.

Table 4.5. Recommended Preamble Length

(G)FSK Disabled Disabled Standard 4 Bytes 20 bits
(G)FSK Enabled Disabled Standard 5 Bytes 20 bits
(G)FSK Disabled Disabled Non-standard 2 Bytes 0 bits
(G)FSK Enabled Non-standard Not Supported
(G)FSK Disabled Enabled Standard 7 Bytes 24 bits
(G)FSK Enabled Enabled Standard 8 Bytes 24 bits
4(G)FSK Disabled Disabled Standard 40 symbols 16 symbols
4(G)FSK Enabled Disabled Standard 48 symbols 16 symbols
4(G)FSK Non-standard Not Supported
OOK Disabled Disabled Standard 4 Bytes 20 bits
OOK Disabled Disabled Non-standard 2 Bytes 0 bits
OOK Enabled Not Supported
Note

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

_— ‘j ...the world's most energy friendly wireless MCUs

» The recommended preamble length and preamble detection thresholds listed above are
to achieve 0% PER. They may be shortened when occasional packet errors are tolerable.

¢ All recommended preamble lengths and detection thresholds include AGC and BCR
settling times.

« “Standard” preamble type should be set for an alternating data sequence at the max data
rate (...10101010...).

* “Non-standard” preamble type can be set for any preamble type including ...10101010...

* When preamble detection threshold = 0, sync word needs to be 3 Bytes to avoid false
syncs. When only a 2 Byte sync word is available the sync word detection can be
extended by including the last preamble Byte into the RX sync word setting.

4.1.5 Internal Functional Blocks
The following sections provide an overview to the key internal blocks and features.
4.1.5.1 RX Chain

The internal low-noise amplifier (LNA) is designed to be a wide-band LNA that can be matched with
three or four external discrete components to cover any common range of frequencies in the sub-GHz
band. The LNA has extremely low noise to suppress the noise of the following stages and achieve
optimal sensitivity; so, no external gain or front-end modules are necessary. The LNA has gain control,
which is controlled by the internal automatic gain control (AGC) algorithm. The LNA is followed by an I-Q
mixer, filter, programmable gain amplifier (PGA), and ADC. The I-Q mixers downconvert the signal to an
intermediate frequency. The PGA then boosts the gain to be within dynamic range of the ADC. The ADC
rejects out-of-band blockers and converts the signal to the digital domain where filtering, demodulation,
and processing is performed. Peak detectors are integrated at the output of the LNA and PGA for use
in the AGC algorithm.

The RX and TX pins may be directly tied externally for output powers less than +17 dBm in the higher-
frequency bands and can support +20 dBm in the lower bands, such as 169MHz. This reduces BOM
cost by saving the expense of a switch for single antenna solutions. See the direct-tie reference designs
on the Silicon Labs web site for more details.

4.1.5.1.1 RX Chain Architecture

It is possible to operate the RX chain in different architecture configurations: fixed-IF, zero-IF, and
scaled-IF. There are trade-offs between the architectures in terms of sensitivity, selectivity, and image
rejection. Fixed-IF is the default configuration and is recommended for most applications. With 35 dB
native image rejection and autonomous image calibration to achieve 55 dB, the fixed-IF solution gives
the best performance for most applications. Fixed-IF obtains the best sensitivity, but it has the effect of
degraded selectivity at the image frequency. An autonomous image rejection calibration is included in
EZRadioPRO devices and described in more detail in Section 4.1.5.2.3 (p. 26). For scaled-IF and
zero-IF, the sensitivity is degraded for data rates less than 100 kbps or bandwidths less than 200 kHz.
The reduction in sensitivity is caused by increased flicker noise as dc is approached. The benefit of
zero-IF is that there is no image frequency; so, there is no degradation in the selectivity curve, but it has
the worst sensitivity. Scaled-IF is a trade-off between fixed-IF and zero-IF. In the scaled-IF architecture,
the image frequency is placed or hidden in the adjacent channel where it only slightly degrades the
typical adjacent channel selectivity. The scaled-IF approach has better sensitivity than zero-IF but still
some degradation in selectivity due to the image. In scaled-IF mode, the image frequency is directly
proportional to the channel bandwidth selected. Figure 4.8 (p. 19) demonstrates the trade-off in
sensitivity between the different architecture options.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Figure 4.9. RX Architecture vs. Data Rate

1% PER sensitivity vs. data rate (h=1)

-95

-100

-105

=== Fixed IF
==l=Scaled IF

-110 -_—

Sensitivity (dBm)

Zero IF

115 /

-120

1 10 100

Data rate (kbps)

4.1.5.2 RX Modem

Using high-performance ADCs allows channel filtering, image rejection, and demodulation to be
performed in the digital domain, which allows for flexibility in optimizing the device for particular
applications. The digital modem performs the following functions:

» Channel selection filter

» TX modulation

* RX demodulation

» Automatic Gain Control (AGC)

* Preamble detection

« Invalid preamble detection

» Radio signal strength indicator (RSSI)
» Automatic frequency compensation (AFC)
* Image Rejection Calibration

» Packet handling

» Cyclic redundancy check (CRC)

The digital channel filter and demodulator are optimized for ultra-low-power consumption and are highly
configurable. Supported modulation types are GFSK, FSK, 4GFSK, 4FSK, GMSK, and OOK. The
channel filter can be configured to support bandwidths ranging from 850 kHz down to 1.1 kHz. A large
variety of data rates are supported ranging from 100 bps up to 1 Mbps. The configurable preamble
detector is used with the synchronous demodulator to improve the reliability of the sync-word detection.
Preamble detection can be skipped using only sync detection, which is a valuable feature in some
applications. The received signal strength indicator (RSSI) provides a measure of the signal strength
received on the tuned channel. The resolution of the RSSI is 0.5 dB. This high-resolution RSSI enables
accurate channel power measurements for clear channel assessment (CCA), carrier sense (CS), and
listen before talk (LBT) functionality. A comprehensive programmable packet handler is integrated to
create a variety of communication topologies ranging from peer-to-peer networks to mesh networks.
The extensive programmability of the packet header allows for advanced packet filtering, which, in
turn enables a mix of broadcast, group, and point-to-point communication. A wireless communication
channel can be corrupted by noise and interference, so it is important to know if the received data is
free of errors. A cyclic redundancy check (CRC) is used to detect the presence of erroneous bits in
each packet. A CRC is computed and appended at the end of each transmitted packet and verified

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ‘j ...the world's most energy friendly wireless MCUs

by the receiver to confirm that no errors have occurred. The packet handler and CRC can significantly
reduce the load on the system microcontroller allowing for a simpler and cheaper microcontroller. The
digital modem includes the TX modulator, which converts the TX data bits into the corresponding stream
of digital modulation values to be summed with the fractional input to the sigma-delta modulator. This
modulation approach results in highly accurate resolution of the frequency deviation. A Gaussian filter
is implemented to support GFSK and 4GFSK, considerably reducing the energy in adjacent channels.
The default bandwidth-time product (BT) is 0.5 for all programmed data rates, but it may be adjusted
to other values.

4.1.5.2.1 Automatic Gain Control (AGC)

The AGC algorithm is implemented digitally using an advanced control loop optimized for fast response
time. The AGC occurs within a single bit or in less than 2 us. Peak detectors at the output of the LNA
and PGA allow for optimal adjustment of the LNA gain and PGA gain to optimize IM3, selectivity, and
sensitivity performance.

4.1.5.2.2 Auto Frequency Correction (AFC)

Frequency mistuning caused by crystal inaccuracies can be compensated for by enabling the digital
automatic frequency control (AFC) in receive mode. There are two types of integrated frequency
compensation: modem frequency compensation and AFC by adjusting the PLL frequency. With AFC
disabled, the modem compensation can correct for frequency offsets up to £0.25 times the IF bandwidth.
When the AFC is enabled, the received signal is centered in the passband of the IF filter, providing
optimal sensitivity and selectivity over a wider range of frequency offsets up to +0.35 times the IF
bandwidth. When AFC is enabled, the preamble length needs to be long enough to settle the AFC. As
shown in Table 4.5 (p. 23) , an additional byte of preamble is typically required to settle the AFC.

4.1.5.2.3 Image Rejection and Calibration

Since the receiver utilizes a low-IF architecture, the selectivity will be affected by the image frequency.
The IF frequency is 468.75 kHz (Fxtal/64), and the image frequency will be at 937.5 kHz (2 x Fxtal/64)
below the RF frequency. The native image rejection of the EZRadioPRO family is 40 dB. Image rejection
calibration is available in the EZRadioPRO to improve the image rejection to more than 55 dB. The
calibration is initiated with the IRCAL API command. The calibration uses an internal signal source, so
no external signal generator is required. The initial calibration takes 250 ms, and periodic re-calibration
takes 100 ms. Recalibration should be initiated when the temperature has changed more than 30 °C.

4.1.5.2.4 Received Signal Strength Indicator

The received signal strength indicator (RSSI) is an estimate of the signal strength in the channel to which
the receiver is tuned. The RSSI measurement is done after the channel filter, so it is only a measurement
of the in-band signal power (desired or undesired). There are two methods for reading the RSSI value
and several different options for configuring the returned RSSI value. The fastest method for reading the
RSSI is to configure one of the four fast response registers (FRR) to return a latched RSSI value. The
latched RSSI value is measured once per packet and is latched at a configurable amount of time after
RX mode is entered. The fast response registers can be read in 16 SPI clock cycles with no requirement
to wait for CTS. The RSSI value may also be read out of the GET_MODEM_STATUS command. In this
command, both the current RSSI and the latched RSSI are available. The current RSSI value represents
the signal strength at the instant in time the GET_MODEM_STATUS command is processed and may
be read multiple times per packet. Reading the RSSI in the GET_MODEM_STATUS command takes
longer than reading the RSSI out of the fast response register. After the initial command, it takes 33 ps
for CTS to be set and then the four or five bytes of SPI clock cycles to read out the respective current
or latched RSSI values.

The RSSI configuration options are set in the MODEM_RSSI_CONTROL API property. The latched
RSSI value may be latched and stored based on the following events: preamble detection, sync
detection, or a configurable number of bit times measured after the start of RX mode (minimum of 4
bit times). The requirement for a minimum of four bit times is determined by the processing delay and

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

settling through the modem and digital channel filter. In MODEM_RSSI_CONTROL, the RSSI may be
defined to update every bit period or to be averaged and updated every four bit periods. If RSSI averaging
over four bits is enabled, the latched RSSI value will be delayed to a minimum of seven bits after the
start of RX mode to allow for the averaging. The latched RSSI values are cleared when entering RX
mode so they may be read after the packet is received or after dropping back to standby mode. If the
RSSI value has been cleared by the start of RX but not yet latched, a value of 0 will be returned if it
is attempted to be read.

The RSSI value read by the API may be translated into dBm by the following linear equation:
RF_Input_Level_dBm = (RSSI_value / 2) - MODEM_RSSI_COMP - 70

The MODEM_RSSI_COMP property provides for fine adjustment of the relationship between the actual
RF input level (in dBm) and the returned RSSI value. That is, adjustment of this property allows the
user to shift the RSSI vs RF Input Power curve up and down. This may be desirable to compensate
for differences in front-end insertion loss between multiple designs (e.g., due to the presence of a SAW
preselection filter, or an RF switch). A value of MODEM_RSSI_COMP = 0x40 = 64d is appropriate for
most applications.

Clear channel assessment (CCA) or RSSI threshold detection is also available. An RSSI threshold may
be set in the MODEM_RSSI_THRESH API property. If the Current RSSI value is above this threshold,
an interrupt or GPIO may notify the host. Both the latched version and asynchronous version of this
threshold are available on any of the GPIOs. Automatic fast hopping based on RSSI is available. See
Section 4.1.5.3.1.2 (p. 28) .

4.1.5.2.5 RSSI Jump Indicator (Collision Detection)

The chip is capable of detecting a jump in RSSI in either direction (i.e., either a signal increase or a signal
decrease). Both polarities of jump detection may be enabled simultaneously, resulting in detection of
a Jump-Up or Jump-Down event. This may be used to detect whether a secondary interfering signal
(desired or undesired) has “collided” with reception of the current packet. An interrupt flag or GPIO pin
may be configured to notify the host MCU of the Jump event. The change in RSSI level required to
trigger the Jump event is programmable through the MODEM_RSSI _JUMP_THRESH API property.

The chip may be configured to reset the RX state machine upon detection of an RSSI Jump, and thus to
automatically begin reacquisition of the packet. The chip may also be configured to generate an interrupt.

This functionality is intended to detect an abrupt change in RSSI level and to not respond to a slow,
gradual change in RSSI level. This is accomplished by comparing the difference in RSSI level over a
programmable time period. In this fashion, the chip effectively evaluates the slope of the change in RSSI
level.

The arrival of a desired packet (i.e., the transition from receiving noise to receiving a valid signal) will
likely be detected as an RSSI Jump event. For this reason, it is recommended to enable this feature in
mid-packet (i.e., after signal qualification, such as PREAMBLE_VALID.) Refer to the APl documentation
for configuration options.

4.1.5.3 Synthesizer

An integrated Sigma Delta (3A) Fractional-N PLL synthesizer capable of operating over the bands

from 142-175, 283-350, 350-525, and 850-1050 MHz. Using a ZA synthesizer has many advantages;
it provides flexibility in choosing data rate, deviation, channel frequency, and channel spacing. The
transmit modulation is applied directly to the loop in the digital domain through the fractional divider,
which results in very precise accuracy and control over the transmit deviation. The frequency resolution
in the 850-1050 MHz band is 28.6 Hz with finer resolution in the other bands. The nominal reference
frequency to the PLL is 30 MHz, but any XTAL frequency from 25 to 32 MHz may be used. The modem
configuration calculator in SS will automatically account for the XTAL frequency being used. The PLL
utilizes a differential LC VCO with integrated on-chip inductors. The output of the VCO is followed by a
configurable divider, which will divide the signal down to the desired output frequency band.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

4.1.5.3.1 Synthesizer Frequency Control

The frequency is set by changing the integer and fractional settings to the synthesizer. The SS calculator
will automatically provide these settings, but the synthesizer equation is shown below for convenience.
The APIs for setting the frequency are FREQ _CONTROL_INTE, FREQ _CONTROL_FRAC2,
FREQ_CONTROL_FRAC1, and FREQ_CONTROL_FRACO.

RF Channel Equation

(fc_inte+fc_frac/2™®)*(2*freq_xo/outdiv) (4.1)

Note
The fc_frac/219 value in the above formula has to be a number between 1 and 2.

Table 4.6. Output Divider (Outdiv) Values for the EZRadioPRO

24 142 175
12 284 350
10 350 420
8 420 525
4 850 1050

4.1.5.3.1.1 EZ Frequency Programming

In applications that utilize multiple frequencies or channels, it may not be desirable to write four API
registers each time a frequency change is required. EZ frequency programming is provided so that
only a single register write (channel number) is required to change frequency. A base frequency
is first set by first programming the integer and fractional components of the synthesizer. This
base frequency will correspond to channel 0. Next, a channel step size is programmed into the
FREQ_CONTROL_CHANNEL_STEP_SIZE_1 and FREQ _CONTROL_CHANNEL_STEP_SIZE_0 API
registers. The resulting frequency will be:

RF Frequency Equation
RF Frequency = Base Frequency + (Channel * Stepsize) 4.2

The second argument of the START_RX or START_TX is CHANNEL, which sets the channel number
for EZ frequency programming. For example, if the channel step size is set to 1 MHz, the base frequency
is set to 900 MHz with the FREQ_CONTROL_INTE and FREQ_CONTROL_FRAC API properties, and
a CHANNEL number of 5 is programmed during the START_TX command, the resulting frequency will
be 905 MHz. If no CHANNEL argument is written as part of the START_RX/TX command, it will default
to the previously-programmed value. The initial value of CHANNEL is 0; so, if no CHANNEL value is
written, it will result in the programmed base frequency.

4.1.5.3.1.2 Automatic RX Hopping and Hop Table

The transceiver supports an automatic RX hopping feature that can be fully configured through the API.
This functionality is useful in applications where it is desired to look for packets but to hop to the next
channel if a packet is not found. The sequence of channel numbers that are visited are specified by
entries in a hop table. If this feature is enabled, the device will automatically start hopping through the
channels listed in the hop table as soon as the chip enters RX mode.

The transceiver supports an automatic RX hopping feature that can be fully configured through the API.
This functionality is useful in applications where it is desired to look for packets but to hop to the next
channel if a packet is not found. The sequence of channel numbers that are visited are specified by
entries in a hop table. If this feature is enabled, the device will automatically start hopping through the
channels listed in the hop table as soon as the chip enters RX mode.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

The hop table can hold up to 64 entries and is maintained in firmware inside the RFIC. Each entry is a
channel number, allowing construction of a frequency plan of up to 64 channels. The number of entries
in the table is set by RX HOP TABLE_SIZE API. The specified channels correspond to the EZ frequency
programming method for programming the frequency. The receiver starts at the base channel and hops
in sequence from the top of the hop table to the bottom. The table will wrap around to the base channel
once it reaches the end of the table. An entry of OxFF in the table indicates that the entry should be
skipped. The device will hop to the next entry in the table that contains a non-OxFF value.

There are three conditions that can be used to determine whether to continue hopping or to stay on a
particular channel. These conditions are as follows:

* RSSI threshold
* Preamble timeout (invalid preamble pattern)
» Sync word timeout (invalid or no sync word detected after preamble)

These conditions can be used individually, or they can be enabled all together by configuring the
RX_HOP_CONTROL API. However, the firmware will make a decision on whether or not to hop based
on the first condition that is met.

The RSSI that is monitored is the current RSSI value. This is compared to the threshold value set in the
MODEM_RSSI_THRESH API property, and, if it is above the threshold value, it will stay on the channel.
If the RSSI is below the threshold, it will continue hopping. There is no averaging of RSSI done during
the automatic hopping from channel to channel. Since the preamble timeout and the sync word timeout
are features that require packet handling, the RSSI threshold is the only condition that can be used if
the user is in “direct” or “RAW” mode where packet handling features are not used.

The RSSI threshold value may be converted to an approximate equivalent RF input power level through
the equation shown in Section 4.1.5.2.4 (p. 26). However, performance should be verified on the
bench to optimize the threshold setting for a given application.

The time spent in receive mode will be determined by the configuration of the hop conditions. Manual
RX hopping will have the fastest turn-around time but will require more overhead and management by
the host MCU.

The following are example steps for using Auto Hop:

» Set the base frequency (inte + frac) and channel step size.

» Define the number of entries in the hop table (RX_HOP_TABLE_SIZE).

» Write the channels to the hop table (RX_HOP_TABLE_ENTRY_n)

e Configure the hop condition and enable auto hopping- RSSI, preamble, or sync
(RX_HOP_CONTROL).

» Set preamble and sync parameters if enabled.

* Program the RSSI threshold property in the modem using “MODEM_RSSI_THRESH".

» Set the preamble threshold using “PREAMBLE_CONFIG_STD_1".

» Program the preamble timeout property using “PREAMBLE_CONFIG_STD_2".

» Set the sync detection parameters if enabled.

 If needed, use “GPIO_PIN_CFG” to configure a GPIO to toggle on hop and hop table wrap.

« Use the “START_RX” API with channel number set to the first valid entry in the hop table (i.e., the
first non OXFF entry).

» Device should now be in auto hop mode.

4.1.5.3.1.3 Manual RX Hopping

The RX_HOP command provides the fastest method for hopping from RX to RX but it requires more
overhead and management by the host MCU. The timing is faster with this method than Start RX or
RX hopping because one of the calculations required for the synthesizer calibrations is offloaded to

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

the host and must be calculated/stored by the host, VCO_CNTO. For VCO_CNT values, download the
EZRadioPRO RX_HOP PLL calculator spreadsheet from the EZRadioPRO product website.

4.1.5.4 Transmitter (TX)

The EZRadioPRO contains an integrated +20 dBm transmitter or power amplifier that is capable of
transmitting from -20 to +20 dBm. The resolution of the programmable steps in output power is less than
0.25 dB when operated within 6 dB of the maximum power setting; the resolution of the steps in output
power becomes coarser and more non-linear as the output power is reduced towards the minimum end
of its control range. The EZRadioPRO PA is designed to provide the highest efficiency and lowest current
consumption possible. The EZRadioPRO is designed to supply +13 dBm output power for less than 20
mA for applications that require operation from a single coin cell battery. The EZRadioPRO can operate
with Class-E matching and output up to +13 dBm Tx power at a supply voltage of VDD = 3.3 V. All PA
options are single-ended to allow for easy antenna matching and low BOM cost. Automatic ramp-up
and ramp-down is automatically performed to reduce unwanted spectral spreading. Refer to “AN627:
Si4460/61 Low-Power PA Matching” and “AN648: PA Matching” for details on TX matching options.

The chip’s TXRAMP pin is disabled by default to save current in cases where the on-chip PA provides
sufficient output power to drive the antenna. In cases where on-chip PA will drive the external PA, and
the external PA needs a ramping signal, TXRAMP is the signal to use. To enable TXRAMP, set the API
Property PA_MODE[7] = 1. TXRAMP will start to ramp up, and ramp down at the SAME time as the
internal on-chip PA ramps up/down.

However, the time constant of the TXRAMP signal for the external PA is programmed independently
of the ramp time constant for the on-chip PA. The ramp time constant for TXRAMP is programmed by
the TC[3:0] field in the PA_RAMP_EX API property and provides the following approximate ramp times
as a function of TC[3:0] value.

Table 4.7. Ramp Times as a Function of TC[3:0] Value

0 1.25
1 1.33
2 1.43
3 154
4 1.67
5 1.82
6 2.00
7 2.22
8 2.50
9 2.86
10 3.33
11 4.00
12 5.00
13 6.67
14 10.00
15 20.00

The ramping profile is close to a linear ramping profile with smoothed out corner when approaching Vhi
and Vlo. The TXRAMP pin can source up to 1 mA without voltage drooping. The TXRAMP pin’s sinking
capability is equivalent to a 10 kOhm pull-down resistor.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

Vhi =3V when Vdd > 3.3 V. When Vdd < 3.3 V, the Vhi will be closely following the Vdd, and ramping
time will be smaller also.

Vlo = 0 V when NO current needed to be sunk into TXRAMP pin. If 10uA need to be sunk into the chip,
Vlo will be 10 pA x 10k = 100 mV.

Table 4.8. Command

0x2200 PA_MODE Sets PA type.
0x2201 PA_PWR_LVL Adjust TX power in fine steps.
0x2202 PA_BIAS_CLKDUTY Adjust TX power in coarse steps and optimizes for

different match configurations.

0x2203 PA_TC Changes the ramp up/down time of the PA.

4.1.5.4.1 EZRadioPRO: +20 dBm PA

The +20 dBm configuration utilizes a class-E matching configuration for all frequency bands except 169
MHz where it uses a Square Wave match. Typical performance for the 915 MHz band for output power
steps, voltage, and temperature are shown in Figure 4.10 (p. 31). The output power is changed in
128 steps through PA_PWR_LVL API. For detailed matching values, BOM, and performance at other
frequencies, refer to “AN648: PA Matching”.

Figure 4.10. +20 dBm TX Power vs. PA_PWR_LVL

TX Power vs. PA_PWR_LVL

TX Power(dBm)

[} 20 40 60 80 100 120
PA_PWR_LVL

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

Figure 4.11. +20 dBm TX Power vs. VDD

TX Power vs. VDD

N
N

N
o

=
[e]

TX Power (dBm)
I
A o

[any
N

=
o

1.8 2 2.2 2.4 2.6 2.8 3 3.2 34 3.6
Supply Voltage (VDD)

Figure 4.12. +20 dBm TX Power vs. Temp

TX Power vs Temp

205 | |

N
o

19.5

TX Power (dBm)
[y
((s)

[EnY
o0
[y

[ary
0o

40 -30 -20 -10 O 10 20 30 40 50 60 70 &0

Temperature (C)

4.1.5.5 Crystal Oscillator

The EZRadioPRO includes an integrated crystal oscillator with a fast start-up time of less than 250 ps.
The design is differential with the required crystal load capacitance integrated on-chip to minimize the
number of external components. By default, all that is required off-chip is the crystal. The default crystal
is 30 MHz, but the circuit is designed to handle any XTAL from 25 to 32 MHz. If a crystal different than 30
MHz is used, the POWER_UP API boot command must be modified. The SS calculator crystal frequency
field must also be changed to reflect the frequency being used. The crystal load capacitance can be
digitally programmed to accommodate crystals with various load capacitance requirements and to adjust
the frequency of the crystal oscillator. The tuning of the crystal load capacitance is programmed through
the GLOBAL_XO_TUNE API property. The total internal capacitance is 11 pF and is adjustable in 127
steps (70 fF/step). The crystal frequency adjustment can be used to compensate for crystal production
tolerances. The frequency offset characteristics of the capacitor bank are demonstrated in Figure 4.13 (p.

33).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

Figure 4.13. Capacitor Bank Frequency Offset Characteristics

Frequency Offset from 913MHz
120Kk - ' ' ' ' ' '_

100b- N\ T S SN - T -
sl N
I NG I S
o N _____________ T

0L _

Frequency Offset [ppm]

0 20 40 60 80 100 120
Code

Utilizing the on-chip temperature sensor and suitable control software, the temperature dependency of
the crystal can be canceled.

A TCXO or external signal source can easily be used in place of a conventional XTAL and should be
connected to the XIN pin. The incoming clock signal is recommended to have a peak-to-peak swing in
the range of 600 mV to 1.4 V and ac-coupled to the XIN pin. If the peak-to-peak swing of the TCXO
exceeds 1.4 V peak-to-peak, then dc coupling to the XIN pin should be used. The maximum allowed
swing on XIN is 1.8 V peak-to-peak.

The XO capacitor bank should be set to 0 whenever an external drive is used on the XIN pin. In addition,
the POWER_UP command should be invoked with the TCXO option whenever external drive is used.

4.1.6 Data Handling and Packet Handler

4.1.6.1 RX and TX FIFOs

Two 64-byte FIFOs are integrated into the chip, one for RX and one for TX, as shown in Figure 4.14 (p.
34) . For dedicated TX or RX, the FIFO size is up to 129 bytes. Writing to command Register 66h
loads data into the TX FIFO, and reading from command Register 77h reads data from the RX FIFO.
The TX FIFO has a threshold for when the FIFO is almost empty, which is set by the “TX_FIFO_EMPTY”
property. An interrupt event occurs when the data in the TX FIFO reaches the almost empty threshold. If
more data is not loaded into the FIFO, the chip automatically exits the TX state after the PACKET_SENT
interrupt occurs. The RX FIFO has one programmable threshold, which is programmed by setting the
“RX_FIFO_FULL" property. When the incoming RX data crosses the Almost Full Threshold, an interrupt
will be generated to the microcontroller via the nIRQ pin. The microcontroller will then need to read the
data from the RX FIFO. The RX Almost Full Threshold indication implies that the host can read at least
the threshold number of bytes from the RX FIFO at that time. Both the TX and RX FIFOs may be cleared
or reset with the “FIFO_RESET” command.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

Figure 4.14. TX and RX FIFOs

TX FIFO RX FIFO

_ RXFIFO Almost
Full Threshold

TX FIFO Almost
Empty Threshold™

4.1.6.2 Packet Handler

When using the FIFOs, automatic packet handling may be enabled for TX mode, RX mode, or both.
The usual fields for network communication, such as preamble, synchronization word, headers, packet
length, and CRC, can be configured to be automatically added to the data payload. The fields needed for
packet generation normally change infrequently and can therefore be stored in registers. Automatically
adding these fields to the data payload in TX mode and automatically checking them in RX mode greatly
reduces the amount of communication between the microcontroller and EZRadioPRO. It also greatly
reduces the required computational power of the microcontroller. The general packet structure is shown
in Figure 4.15 (p. 34). Any or all of the fields can be enabled and checked by the internal packet

handler.

Figure 4.15. Packet Handler Structure

L] = = = = =
o -3 2 o a o
o o 2 o o o
-~ ~ © <« ©
g T T T T o
Preamble = E g 2 2 2
c ic i i iC iC
> Q o o Q o
on o o o ® o
a5 (8] o o o o
| 1-255 Bytes | 1-4Bytes | Config | | Config | | Config | | Config | | Config | |
I ! | | I I ! I I

I
0,2,0ré4 0,2,0r4 0,20r4 0,2,0r4 0,2,0r4

Bytes Bytes Bytes Bytes Bytes

The fields are highly programmable and can be used to check any kind of pattern in a packet structure.
The general functions of the packet handler include the following:

» Detection/validation of Preamble quality in RX mode (PREAMBLE_VALID signal)
» Detection of Sync word in RX mode (SYNC_OK signal)

» Detection of valid packets in RX mode (PKT_VALID signal)

» Detection of CRC errors in RX mode (CRC_ERR signal)

» Data de-whitening and/or Manchester decoding (if enabled) in RX mode

» Match/Header checking in RX mode

» Storage of Data Field bytes into FIFO memory in RX mode

» Construction of Preamble field in TX mode

» Construction of Sync field in TX mode

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

» Construction of Data Field from FIFO memory in TX mode
» Construction of CRC field (if enabled) in TX mode
» Data whitening and/or Manchester encoding (if enabled) in TX mode

For details on how to configure the packet handler, see “AN626: Packet Handler Operation for Si446x
RFICs”.

4.1.7 RX Modem Configuration

The EZRadioPRO can easily be configured for different data rate, deviation, frequency, etc. by using
the Radio Configuration Application (RCA) GUI which is part of Simplicity Studio (SS).

4.1.8 Auxiliary Blocks
4.1.8.1 Wake-up Timer and 32 kHz Clock Source

The chip contains an integrated wake-up timer that can be used to periodically wake the chip from sleep
mode. The wake-up timer runs from either the internal 32 kHz RC Oscillator, or from an external 32
kHz XTAL.

The wake-up timer can be configured to run when in sleep mode. If WUT_EN = 1 in the
GLOBAL_WUT_CONFIG property, prior to entering sleep mode, the wake-up timer will count for a
time specified defined by the GLOBAL_WUT_R and GLOBAL_WUT_M properties. At the expiration
of this period, an interrupt will be generated on the nIRQ pin if this interrupt is enabled in the
INT_CTL_CHIP_ENABLE property. The microcontroller will then need to verify the interrupt by reading
the chip interrupt status either via GET_INT_STATUS or a fast response register. The formula for
calculating the Wake-Up Period is as follows:

Wake-up Time Equation
WUT = WUT_M *(4*2"YT-R/32768 (4.3)

The RC oscillator frequency will change with temperature; so, a periodic recalibration is required. The
RC oscillator is automatically calibrated during the POWER_UP command and exits from the Shutdown
state. To enable the recalibration feature, CAL_EN must be setin the GLOBAL_WUT_CONFIG property,
and the desired calibration period should be selected via WUT_CAL_PERIODJ[2:0] in the same API
property. During the calibration, the 32 kHz RC oscillator frequency is compared to the 30 MHz XTAL and
then adjusted accordingly. The calibration needs to start the 30 MHz XTAL, which increases the average
current consumption; so, a longer CAL_PERIOD results in a lower average current consumption. The
32 kHz XTAL accuracy is comprised of both the XTAL parameters and the internal circuit. The XTAL
accuracy can be defined as the XTAL initial error + XTAL aging + XTAL temperature drift + detuning
from the internal oscillator circuit. The error caused by the internal circuit is typically less than 10 ppm.
Refer to APl documentation for details on WUT related commands and properties.

4.1.8.2 Low Duty Cycle Mode (Auto RX Wake-Up)

The low duty cycle (LDC) mode is implemented to automatically wake-up the receiver to check if a valid
signal is available or to enable the transmitter to send a packet. It allows low average current polling
operation by the EZRadioPRO for which the wake-up timer (WUT) is used. RX and TX LDC operation
must be set via the GLOBAL _WUT_CONFIG property when setting up the WUT. The LDC wake-up
period is determined by the following formula:

LDC Wake-up Time Equation
LDC = WUT_LDC *@*2"V"-R/32768 (4.4)

where the WUT_LDC parameter can be set by the GLOBAL WUT_LDC property. The WUT period
must be set in conjunction with the LDC mode duration; for the relevant API properties, see the wake-
up timer (WUT) section.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

Figure 4.16. RX and TX LDC Sequences

I WUT Period | WUT Period
: LDC ; : LDC : |
\ RX_STATE . WUTState : RX_STATE : WUTState |
| WUT Period | WUT Period
'\ DC « IDC_ ;
. TX_STATE WUT State | TX_STATE WUT State

The basic operation of RX LDC mode is shown in Figure 4.17 (p. 36). The receiver periodically wakes
itself up to work on RX_STATE during LDC mode duration. If a valid preamble is not detected, a receive
error is detected, or an entire packet is not received, the receiver returns to the WUT state (i.e., ready or
sleep) at the end of LDC mode duration and remains in that mode until the beginning of the next wake-
up period. If a valid preamble or sync word is detected, the receiver delays the LDC mode duration to
receive the entire packet. If a packet is not received during two LDC mode durations, the receiver returns
to the WUT state at the last LDC mode duration until the beginning of the next wake-up period.

Figure 4.17. Low Duty Cycle Mode for RX

End Abort Prolong & End Prolong & Abort Off
wuT | WUT Period | |

tocon [LDCModeDuration | | L i i [

xtabon [[L] L L [

RX_STATE [] [|] [L
| |

Events I | | l |
Valid packet No SYNC word detected Valid Preamble or Valid Valid Preamble or Packet No RF
SYNC word Packet SYNC word Error Input

detected detected

In TX LDC mode, the transmitter periodically wakes itself up to transmit a packet that is in the data
buffer. If a packet has been transmitted, nIRQ goes low if the option is set in the INT_CTL_ENABLE
property. After transmitting, the transmitter immediately returns to the WUT state and stays there until
the next wake-up time expires.

4.1.8.3 Temperature, Battery Voltage, and Auxiliary ADC

The EZRadioPRO family contains an integrated auxiliary ADC for measuring internal battery voltage, an
internal temperature sensor, or an external component over a GP10. The ADC utilizes a SAR architecture
and achieves 11-bit resolution. The Effective Number of Bits (ENOB) is 9 bits. When measuring external
components, the input voltage range is 1 V, and the conversion rate is between 300 Hz to 2.44 kHz. The
ADC value is read by first sending the GET_ADC_READING command and enabling the inputs that are
desired to be read: GPIO, battery, or temp. The temperature sensor accuracy at 25 °C is typically £2
°C. Refer to API documentation for details on the command and reply stream.

4.1.8.4 Low Battery Detector

The low battery detector (LBD) is enabled and utilized as part of the wake-up-timer (WUT). The LBD
function is not available unless the WUT is enabled, but the host MCU can manually check the battery
voltage anytime with the auxiliary ADC. The LBD function is enabled in the GLOBAL _WUT_CONFIG
API property. The battery voltage will be compared against the threshold each time the WUT expires.
The threshold for the LBD function is set in GLOBAL_LOW_BATT_THRESH. The threshold steps are
in increments of 50 mV, ranging from a minimum of 1.5 V up to 3.05 V. The accuracy of the LBD is +3%.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

The LBD natification can be configured as an interrupt on the nIRQ pin or enabled as a direct function
on one of the GPIOs.

4.1.8.5 Antenna Diversity

To mitigate the problem of frequency-selective fading due to multipath propagation, some transceiver
systems use a scheme known as antenna diversity. In this scheme, two antennas are used. Each time the
transceiver enters RX mode the receive signal strength from each antenna is evaluated. This evaluation
process takes place during the preamble portion of the packet. The antenna with the strongest received
signal is then used for the remainder of that RX packet. The same antenna will also be used for the
next corresponding TX packet. This chip fully supports antenna diversity with an integrated antenna
diversity control algorithm. The required signals needed to control an external SPDT RF switch (such as
a PIN diode or GaAs switch) are available on the GPIOx pins. The operation of these GPIO signals is
programmable to allow for different antenna diversity architectures and configurations. The antdiv[2:0]
bits are found in the MODEM_ANT_DIV_CONTROL API property descriptions and enable the antenna
diversity mode. The GPIO pins are capable of sourcing up to 5 mA of current; so, it may be used directly
to forward-bias a PIN diode if desired. The antenna diversity algorithm will automatically toggle back
and forth between the antennas until the packet starts to arrive. The recommended preamble length for
optimal antenna selection is 8 bytes.

4.1.8.6 Preamble Sense Mode

This mode of operation is suitable for extremely low power applications where power consumption is
important. The preamble sense mode (PSM) takes advantage of the Digital Signal Arrival detector (DSA),
which can detect a preamble within eight bit times with no sensitivity degradation. This fast detection
of an incoming signal can be combined with duty cycling of the receiver during the time the device is
searching or sniffing for packets over the air. The average receive current is lowered significantly when
using this mode. In applications where the timing of the incoming signal is unknown, the amount of
power savings is primarily dependent on the data rate and preamble length as the Rx inactive time is
determined by these factors. In applications where the sleep time is fixed and the timing of the incoming
signal is known, the average current also depends on the sleep time. The PSM mode is similar to the
low duty cycle mode but has the benefit of faster signal detection and autonomous duty cycling of the
receiver to achieve even lower average receive currents. This mode can be used with the low power
mode (LP) which has an active RX current of 10 mA or with the high-performance (HP) mode which
has an active RX current of 13 mA.

Figure 4.18. Preamble Sense Mode

Current Consumption during Packet Search

) Packet
Receive-- Found! s -~ 10~13 mA

Ready e el - - R - - - R - - - L - - - - [- - oo oeeee e ~2mA
1
Sleep -*------ A - ——— ~1 uA
>t
Table 4.9. Data Rates
1.2 kbps 9.6 kbps 50 kbps 100 kbps

PM length = 4 bytes 6.48 6.84 8.44 10.43 mA
PM length = 8 bytes 3.83 3.96 4.57 5.33 mA

Note
Typical values. Active RX current is 13 mA.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

4.1.9 Wireless MBUS support

Wireless M-Bus is a widely accepted standard for smart meter communication in Europe. The radio
supports all Wireless M-Bus modes per the latest draft specification of the EN13757-4 standard. This
includes a much wider deviation error tolerance of +30% and frequency error tolerance of +4 kHz, short
preamble support (16-bit preamble for 2 and 4 level FSK modes), 3-0f-6 encoding and decoding and
169 MHz N modes including N2g.

In addition, Silicon Labs has a production ready Wireless M-Bus stack available at no additional cost
which supports all modes and runs on the EZR32 (32-bit ARM) family of energy friendly microcontrollers.
This stack and complete documentation including PHY configuration and test results are available for
download from the EZRadioPRO page on the Silicon Labs website.

4.1.10 ETSI EN300 220 Category 1

The radio is capable of supporting ETSI Category 1 applications (social alarms, healthcare applications,
etc.) in the 169 MHz and 868 MHz bands. Blocking performance is improved at the 2 MHz and 10 MHz
offsets allowing for additional margin from the regulatory limits. The radio complies with ACS limits at
the 25 kHz offset in both, 169 MHz and 868 MHz bands. In the 169 MHz band, there is no need for an
external SAW filter for 2 MHz and 10 MHz blocking resulting in a lower system cost. In the 868 MHz band,
an external SAW filter is still required to meet the Cat 1 blocking limits. An RF Pico board is available
for evaluation specifically for ETSI Cat 1 applications.

Test conditions for ETSI Cat 1 specifications are different from the typical conditions and are stated
below.

» Data Rate: 3 kbps

» Deviation: 2 kHz

* Modulation: 2 GFSK

* |F mode: Fixed and/or Scaled IF
* RX bandwidth: 13 kHz

* BER target: 0.1%

» Blocker signal: CW

Table 4.10. Energy Mode Description

+25 kHz ACS 54 dB 62 dB 58 dB
+2 MHz blocking 84 dB 88 dB 76 dB
+10 MHz blocking 84 dB 90 dB 82 dB
RX sensitivity -107 dB -108 dB -108 dB
Spurious response 35dB 40 dB 40 dB

For further details on configuring the radio for ETSI Cat 1 applications, refer to the application notes
available on the Silicon Labs website

4.2 EZRadio Overview

4.2.1 Introduction

The EZRadio with its +13 dBm output power and excellent sensitivity of -116 dBm allows for a longer
operating range, while the low current consumption of 18 mA TX (at 10 dBm), 10 mA RX, and 40
nA standby, provides for superior battery life. By fully integrating all components from the antenna to
the GPIO or SPI interface to the MCU, the EZRadio makes it easy to realize this performance in an

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

application. The EZRadio is capable of supporting major worldwide regulatory standards, such as FCC,
ETSI, ARIB, and China regulatory standards.

4.2.2 Functional Description

Figure 4.19. EZRadio Block Diagram

GRIO2 GRIO2 XM XauT
[l 1l
SDH [Syntheszer . (T
25.232hHz X0
R Chai
H din | nsEL
@—.— _"|-I_"|L . | - | |] el g | z00
Rxp [o —
Rz T 3 3
Lhi, Py ADC o =] =00
REn hodem 25
@—I— TR -] - . ﬁ —] SCLK
| nlRQ
Batteny
T — Vaoltage Furs ALC] =Pio
Sers o
[l 0

DD GO0

The EZRadio is an easy-to-use, size efficient, low current wireless ISM device that covers the sub-GHz
bands. The wide operating voltage range of 1.8-3.6 V and low current consumption make the EZRadio an
ideal solution for battery powered applications. The EZRadio operates as a time division duplexing (TDD)
transceiver where the device alternately transmits and receives data packets. The device uses a single-
conversion mixer to downconvert the FSK/GFSK or OOK modulated receive signal to a low IF frequency.
Following a programmable gain amplifier (PGA), the signal is converted to the digital domain by a high

performance AX ADC allowing filtering, demodulation, slicing, and packet handling to be performed in
the built-in digital modem, increasing the receiver’s performance and flexibility versus analog based
architectures. The demodulated signal is output to the system MCU through a programmable GPIO or
via the standard SPI bus by reading the 64-byte Rx FIFO.

A single high-precision local oscillator (LO) is used for both transmit and receive modes since the
transmitter and receiver do not operate at the same time. The LO signal is generated by an integrated

VCO and Az Fractional-N PLL synthesizer. The synthesizer is designed to support configurable data
rates up to 500 kbps. The EZRadio operates in the frequency bands of 283-350, 350-525, and 850-960

MHz. The transmit FSK data is modulated directly into the AZ data stream and can be shaped by a
Gaussian low-pass filter to reduce unwanted spectral content.

The device contains a power amplifier (PA) that supports output powers up to +13 dBm and is designed
to support single coin cell operation with current consumption of 18 mA for +10 dBm output power.
The PA is single-ended to allow for easy antenna matching and low BOM cost. The PA incorporates
automatic ramp-up and ramp-down control to reduce unwanted spectral spreading. Additional system
features, such as 64-byte TX/RX FIFOs, preamble detection, sync word detector, and CRC, reduce
overall current consumption and allow for the use of lower-cost system MCUs. Power-on-reset (POR)
and GPIOs further reduce overall system cost and size. The EZRadio is designed to work with an MCU,
crystal, and a few passives to create a very compact and low-cost system.

4.2.2.1 Receiver Chain

The internal low-noise amplifier (LNA) is designed to be a wideband LNA that can be matched with
three external discrete components to cover any common range of frequencies in the sub-GHz band.
The LNA has extremely low noise to suppress the noise of the following stages and achieve optimal

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

sensitivity; therefore, no external gain or front-end modules are necessary. The LNA has gain control,
which is controlled by the internal automatic gain control (AGC) algorithm. The LNA is followed by an I-Q
mixer, filter, programmable gain amplifier (PGA), and ADC. The I-Q mixers downconvert the signal to an
intermediate frequency. The PGA then boosts the gain to be within dynamic range of the ADC. The ADC
rejects out-of-band blockers and converts the signal to the digital domain where filtering, demodulation,
and processing is performed. Peak detectors are integrated at the output of the LNA and PGA for use
in the AGC algorithm.

The RX and TX pins can be directly tied externally on the EZRadio transceiver.
4.2.2.2 Receiver Modem

Using high-performance ADCs allows channel filtering, image rejection, and demodulation to be
performed in the digital domain, which allows for flexibility in optimizing the device for particular
applications. The digital modem performs the following functions:

* Channel selection filter

* Preamble detection

* Invalid preamble detection

» TX modulation

* RX demodulation

e Automatic Gain Control (AGC)

» Automatic frequency compensation (AFC)
» Radio signal strength indicator (RSSI)

» Cyclic redundancy check (CRC)

The digital channel filter and demodulator are optimized for ultra-low-power consumption and are
highly configurable. Supported modulation types are GFSK, FSK, and OOK. The channel filter can be
configured to support bandwidths ranging from 850 kHz down to 40 kHz. A large variety of data rates
are supported ranging from 0.5 kbps up to 500 kbps. The configurable preamble detector is used with
the synchronous demodulator to improve the reliability of the sync-word detection. Preamble detection
can be skipped using only sync detection, which is a valuable feature of the asynchronous demodulator
when very short preambles are used. The received signal strength indicator (RSSI) provides a measure
of the signal strength received on the tuned channel. The resolution of the RSSI is 0.5 dB. This high-
resolution RSSI enables accurate channel power measurements for clear channel assessment (CCA),
carrier sense (CS), and listen before talk (LBT) functionality. A wireless communication channel can be
corrupted by noise and interference, so it is important to know if the received data is free of errors. A
cyclic redundancy check (CRC) is used to detect the presence of erroneous bits in each packet. ACRC is
computed and appended at the end of each transmitted packet and verified by the receiver to confirm that
no errors have occurred. The packet handler and CRC can significantly reduce the load on the system
microcontroller, allowing for a simpler and cheaper microcontroller. The digital modem includes the TX
modulator, which converts the TX data bits into the corresponding stream of digital modulation values to
be summed with the fractional input to the sigma-delta modulator. This modulation approach results in
highly accurate resolution of the frequency deviation. A Gaussian filter is implemented to support GFSK,
considerably reducing the energy in adjacent channels. The default bandwidth-time (BT) product is 0.5
for all programmed data rates.

4.2.2.3 Received Signal Strength Indicator

The received signal strength indicator (RSSI) is an estimate of the signal strength in the channel to which
the receiver is tuned. The RSSI measurement is done after the channel filter, so it is only a measurement
of the desired or undesired in-band signal power. The EZRadio uses a fast response register to read
RSSI and so can complete the read in 16 SPI clock cycles with no requirement to wait for CTS. The
RSSI value reported by this APl command can be converted to dBm using the following equation:

RSSI Equation

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

RSSlggm = (RSSI_value\2) - 130 (4.5)

The value of 130 in the above formula is based on bench characterization of the EZRadio RF Pico
boards (evaluation boards). The RSSI value is latched at sync word detection and can be read via the
fast response register. The latched value of RSSI is available until the device re-enters Rx mode. In
addition, the current value of RSSI can be read out using the GET_MODEM_STATUS command. This
can be used to implement CCA (clear channel assessment) functionality. The user can set up an RSSI
threshold value using the SS Radio Configuration Application GUI.

4.2.2.4 Synthesizer

The EZRadio includes an integrated Sigma Delta (ZA) Fractional-N PLL synthesizer capable of operating
over the bands from 283-350, 350-525, and 850-960 MHz. The synthesizer has many advantages;
it provides flexibility in choosing data rate, deviation, channel frequency, and channel spacing. The
transmit modulation is applied directly to the loop in the digital domain through the fractional divider,
which results in very precise accuracy and control over the transmit deviation. The frequency resolution
is (2/3)Freq_xo/(219) for 283-350 MHz, Freq_xo/(219) for 350-525 MHz, and Freq_xo/(218) for 850-960
MHz. The nominal reference frequency to the PLL is 30 MHz, but any XTAL frequency from 25 to 32
MHz may be used. The modem configuration calculator in SS will automatically account for the XTAL
frequency being used. The PLL utilizes a differential LC VCO with integrated on-chip inductors. The
output of the VCO is followed by a configurable divider, which will divide the signal down to the desired
output frequency band.

4.2.2.4.1 Synthesizer Frequency Control

The frequency is set by changing the integer and fractional settings to the synthesizer. The SS calculator
will automatically provide these settings, but the synthesizer equation is shown below for convenience.
Initial frequency settings are configured in the EZConfig setup and can also be modified using
the API commands: FREQ_CONTROL_INTE, FREQ_CONTROL_FRAC2, FREQ_CONTROL_FRAC1,
and FREQ_CONTROL_FRACO.

RF Frequency Equation
RF Frequency = (fc_inte + fc_frac\2™®) * (4 * freq_xo\outdiv) (4.6)

Note
The fc_frac/219 value in the above formula must be a number between 1 and 2. The LSB of
fc_frac must be "1".

Table 4.11. Output Divider (Outdiv) Values

12 284 350
10 350 420
8 420 525
4 850 960

4.2.2.4.1.1 EZ Frequency Programming

EZ frequency programming allows for easily changing radio frequency using a single APl command. The
base frequency is first set using the EZConfig setup. This base frequency will correspond to channel 0.
Next, a channel step size is also programmed within the EZConfig setup. The resulting frequency will be:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

RF Frequency Equation
RR Frequency = Base Frequency + Channel * Step Size 4.7)

The second argument of the START_RX or START_TX is CHANNEL, which sets the channel number
for EZ frequency programming. For example, if the channel step size is set to 1 MHz, the base frequency
is set to 900 MHz, and a CHANNEL number of 5 is programmed during the START_TX command, the
resulting frequency will be 905 MHz. If no CHANNEL argument is written as part of the START_RX/TX
command, it will default to the previous value. The initial value of CHANNEL is 0 and so will be set to
the base frequency if this argument is never used.

4.2.2.5 Transmitter

The device contains a +13 dBm power amplifier that is capable of transmitting from -40 to +13 dBm. The
output power set size is dependent on the power level and can be seen in Figure 4.20 (p. 42). The PA
power level is set using the APl command: PA_PWR_LVL. The power amplifier is single-ended to allow
for easy antenna matching and low BOM cost. For detailed matching values, BOM, and performance
expectations, refer to "AN686: Antennas for the Si4455/4355 RF ICs". Power ramp-up and ramp-down
is automatically performed to reduce unwanted spectral spreading.

Figure 4.20. Tx Power vs PA_PWR_LVL and VDD

TX Power vs PA_PWR_LVL and VDD

15

==\ DD 1.8V
==—=VDD 3.3V
=—ar—\DD 3.8V

Output Power [d Bm]

20 20 10 50 &0 70 80
PA_PWR_LVL

4.2.2.6 Crystal Oscillator

The EZRadio includes an integrated crystal oscillator with a fast start-up time of less than 250 ps.
The design is differential with the required crystal load capacitance integrated on-chip to minimize
the number of external components. By default, all that is required off-chip is the crystal. The default
crystal is 30 MHz, but the circuit is designed to handle any XTAL from 25 to 32 MHz, set in the
EZConfig setup. The crystal load capacitance can be digitally programmed to accommodate crystals
with various load capacitance and to adjust the frequency of the crystal oscillator. The tuning of the
crystal load capacitance is programmed through the GLOBAL_XO_TUNE API property. The total internal
capacitance is 11 pF and is adjustable in 127 steps (70 fF/step). The crystal frequency adjustment can
be used to compensate for crystal production tolerances. The frequency offset characteristics of the
capacitor bank are demonstrated in Figure 4.21 (p. 43) .

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

Figure 4.21. Capacitor Bank Frequency Offset Characteristics

Freguency Dffset from 913MHz
P] — ! ' ! ; =

100} -

L]
L=
H
H
i

o
=1
!

i

Frequency Offset [ppm]
Pud p-
¥ (=]

=
T

P
0
T
:
i

An external signal source can easily be used in lieu of a conventional XTAL and should be connected
to the XIN pin. The incoming clock signal is recommended to be ac-coupled to the XIN pin since the dc
bias is controlled by the internal crystal oscillator buffering circuitry. The input swing range should be
between 600 mV-1.8 V peak-to-peak. If external drive is desired, the incoming signal amplitude should
not go below 0 V or exceed 1.8 V. The best dc bias should be approximately 0.7 V. However, if the signal
swing exceeds 1.4 Vpp, the dc bias can be set to 1/2 the peak-to-peak voltage swing. The XO capacitor
bank should be set to 0 whenever an external drive is used on the XIN pin. In addition, the POWER_UP
command should be invoked with the TCXO option whenever external drive is used.

4.2.2.7 Battery Voltage and Auxiliary ADC

The EZRadio contains an integrated auxiliary 11-bit ADC used for the internal battery voltage detector
or an external component via GPIO. The Effective Number of Bits (ENOB) is 9 bits. When measuring
external components, the input voltage range is 1 V, and the conversion rate is between 300 Hz to
2.44 kHz. The ADC value is read by first sending the GET_ADC_READING command and enabling the
desired inputs. When the conversion is finished and all the data is ready, CTS will go high, and the data
can be read out. For details on this command and the formulas needed to interpret the results, refer to
the EZRadio API documentation zip file available from www.silabs.com.

4.2.3 Configuration Options and User Interface

4.2.3.1 Radio Configuration Application (RCA) GUI

The Radio Configuration Application (RCA) GUI is part of the Simplicity Studio (SS) program. This setup
interface provides an easy path to quickly selecting and loading the desired configuration for the device.
The RCA allows for two different methods for device setup. One option is the configuration table, which
provides a list of preloaded, common configurations. A second option allows for custom configurations
to be loaded. After the desired configuration is selected, the RCA automatically creates the EZConfig
configuration array that will be passed to the chip for setup. The program then gives the option to load
a sample project with the selected configuration onto the evaluation board or launch IDE with the new
configuration array preloaded into the user program. For more information on EZConfig usage, refer to
application note, “AN692: Si4355/Si4455 Programming Guide”.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

4.2.3.1.1 Radio Configuration Application

The Radio Configuration Application provides an intuitive interface for directly modifying the device
configuration. Using this control panel, the device parameters such as modulation type, data rate,
frequency deviation, and any packet related settings can be set. The program then takes these
parameters and automatically determines the appropriate device settings. This method allows the user
to have complete flexibility in determining the configuration of the device without the need to translate the
system requirements into device specific properties. The resulting configuration array is automatically
generated and available for use in the user's program. The resulting configuration array is obfuscated;
therefore, its content changes every time a new array is generated, even if the input parameters are
the same.

4.2.3.2 Configuration Options
4.2.3.2.1 Frequency Band

The EZRadio can operate in the 283-350 MHz, 350-525 MHz, or 850-960 MHz bands. One of these
three bands will be selected during the configuration setup and then the specific transmission frequency
that will be used within this band can be selected.

4.2.3.2.2 Modulation Type

The EZRadio can operate using On/Off Keying (OOK), Frequency Shift Keying (FSK), or Gaussian
Frequency Shift Keying (GFSK). OOK modulation is the most basic modulation type available. It is the
most power-efficient method and does not require as high oscillator accuracy as FSK. FSK provides the
best sensitivity and range performance, but generally requires more precision from the oscillator used.
GFSK is a version of FSK where the signal is passed through a Gaussian filter, limiting its spectral width.
As a result, the out-of-band components of the signal are reduced.

The EZRadio also has an option for Manchester coding. This method provides a state transition at each
bit and so allows for more reliable clock recovery. Manchester code is available only when using the
packet handler option and, if selected, will be applied to the entire packet (the preamble pattern is set
to continuous “1” if the Manchester mode is enabled; therefore, the chip rate of the resulting preamble
pattern is the same as for the rest of the packet). The polarity can be configured to a “10” or “01".

Figure 4.22. Manchester Code Example

e U UL L
Data J L

1 1] 1 1] 1] 1 1 1

Manchester—l—| ||| ||||||—

4.2.3.2.3 Frequency Deviation

If FSK or GFSK modulation is selected, then a frequency deviation will also need to be selected. The
frequency deviation is the maximum instantaneous difference between the FM modulated frequency
and the nominal carrier frequency. The EZRadio can operate across a wide range of data rates and
frequency deviations. If a frequency deviation needs to be selected, the following guideline might be
helpful to build a robust link. A proper frequency deviation is linked to the frequency error between
transmitter and receiver. The frequency error can be calculated using the crystal tolerance parameters
and the RF operating frequency: (ppm_tx+ppm_rx)*Frf/1E-6. For frequency errors below 50 kHz, the

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

deviation can be about the same as the frequency error. For frequency errors exceeding 50 kHz, the
frequency deviation can be set to about 0.75 times the frequency error. It is advised to position the
modulation index (= 2*freq_dev/data_rate) into a range between 1 and 100 for Packet Handling mode
and 2 to 100 for direct mode (non-standard preamble). For example, when in Packet Handling mode
and the frequency error is smaller than data_rate/2, the frequency deviation is set to about data_rate/2.
When the frequency error exceeds 100xdata_rate/2, the frequency deviation is preferred to be set to
100xdata_rate/2.

4.2.3.2.4 Channel Bandwidth

The channel bandwidth sets the bandwidth for the receiver. Since the receiver bandwidth is directly
proportional to the noise allowed in the system, this will normally be set as low as possible. The specific
channel bandwidth used will usually be determined based upon the precision of the oscillator and the
frequency deviation of the transmitted signal.

4.2.3.2.5 Preamble Length

A preamble is a defined simple bit sequence used to notify the receiver that a data transmission is
imminent. The length of this preamble will normally be set as short as possible to minimize power while
insuring that it will be reliably detected given the receiver characteristics, such as duty cycling and packet
error rate performance. The EZRadio allows the preamble length to be set between 0 to 255 bytes in
length with a default length of 4 bytes. The preamble pattern for the EZRadio will always be 55h with a
first bit of “0” if the packet handler capability is used.

4.2.3.2.6 Sync Word Length and Pattern

The sync word follows the preamble in the packet structure and is used to identify the start of the payload
data and to synchronize the receiver to the transmitted bit stream. The EZRadio allows for sync word
lengths of 1 to 4 bytes, where the default is a 2 byte length 2d d4 pattern.

4.2.3.2.7 Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is used to verify that no errors have occurred during transmission and
the received packet has exactly the same data as it did when transmitted. If this function is enabled in
the EZRadio, the last byte of transmitted data must include the CRC generated by the transmitter. The
EZRadio then performs a CRC calculation on the received packet and compares that to the transmitted
CRC. If these two values are the same, the EZRadio will set an interrupt indicating a valid packet has
been received and is waiting in the Rx FIFO. If these two CRC values differ, the EZRadio will flag an
interrupt indicating that a packet error occurred. The EZRadio uses CRC(16)-IBM: x16+x15+x2+1 with
a seed of OxFFFF as well as a 16-bit ITU-T CRC as specified in the IEEE 802.15.4g standard.

4.2.3.2.8 Preamble Sense Mode

This mode of operation is suitable for extremely low power applications where power consumption is
important. The preamble sense mode (PSM) takes advantage of the Digital Signal Arrival detector (DSA),
which can detect a preamble within eight bit times with no sensitivity degradation. This fast detection
of an incoming signal can be combined with duty cycling of the receiver during the time the device is
searching or sniffing for packets over the air. The average receive current is lowered significantly when
using this mode. In applications where the timing of the incoming signal is unknown, the amount of
power savings is primarily dependent on the data rate and preamble length as the Rx inactive time is
determined by these factors. In applications where the sleep time is fixed and the timing of the incoming
signal is known, the average current also depends on the sleep time. The PSM mode is similar to the
low duty cycle mode but has the benefit of faster signal detection and autonomous duty cycling of the
receiver to achieve even lower average receive currents.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Figure 4.23. Preamble Sense Mode

. Hiche [noalgnal, go back fo resdy wtate) . u'.ldl:hl[llll-l:l-l,.r:mhl:l
Recejve == 10.9mA
qud'lr - - —— = ———— s o e— e P, = 18 e
SIEP - mmm mmm mmm = T80 né
» t

Table 4.12. Data Rates

Data Rate

50 kbps 100 kbps

3.6 3.7 4.3 5.0 mA

Note
Typical values. Active RX current is 10.9 mA.

4.2.4 Controller Interface

4.2.4.1 Serial Peripheral Interface

The EZRadio communicates with the host MCU over a standard 4-wire serial peripheral interface (SPI):
SCLK, SDI, SDO, and nSEL. The SPI interface is designed to operate at a maximum of 10 MHz. The
SPI timing parameters are listed in Table 4.13 (p. 46). The host MCU writes data over the SDI pin
and can read data from the device on the SDO output pin. Figure 4.25 (p. 47) shows an SPI write
command. The nSEL pin should go low to initiate the SPI command. The first byte of SDI data will be
one of the APl commands followed by n bytes of parameter data which will be variable depending on
the specific command. The rising edges of SCLK should be aligned with the center of the SDI data. For
details regarding pin setup, see datasheet for the specific part.

Table 4.13. Serial Interface Timing Parameters

Symbol Parameter Min (ns) Max (ns)
tCH Clock high time 40

tCL Clock low time 40

tDS Data setup time 20

tDH Data hold time 20

tDD Output data delay time 43
tDE Output disable time 45
tSS Select setup time 20

tSH Select hold time 50

tSW Select high period 80

Note

CL =10 pF; VDD = 1.8 V; SDO Drive strength setting = 10.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

Figure 4.24. Serial Interface Timing

...the world's most energy friendly wireless MCUs

SCLK
tss ten tos |to oo tsn toe
SDN X
SDO
ten tsw
nSEL /“ \

Figure 4.25. SPI Write Command

nSEL _L J_

SDO

SDI < FWCommand X ParamByte0 = = = = { ParamByten >

The EZRadio contains an internal MCU which controls all the internal functions of the radio. For SPI
read commands, a typical communication flow of checking clear-to-send (CTS) is used to make sure
the internal MCU has executed the command and prepared the data to be output over the SDO pin.
Figure 4.26 (p. 48) demonstrates the general flow of an SPI read command. Once the CTS value
reads FFh, then the read data is ready to be clocked out to the host MCU. The typical time for a valid
FFh CTS reading is 20 us. Figure 4.27 (p. 48) demonstrates the remaining read cycle after CTS is
set to FFh. The internal MCU will clock out the SDO data on the negative edge so the host MCU should
process the SDO data on the rising edge of SCLK.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

Figure 4.26. SPI Read Command-Check CTS Value

Firmware How

OxFF :
Send Command ——— Read CTS Riestp”oer:/:e
0x00
NSEL |
SDO { CTS >
oI (ReadCmdBuff)
SCK
Figure 4.27. SPI Read Command-Clock Out Read Data
NSEL B

SDO < Response Byte O > e o < Response Byte n >

4.2.4.2 Operating Modes and Timing

The primary states of the EZRadio are shown in Figure 4.28 (p. 48). The shutdown state completely
shuts down the radio, minimizing current consumption and is controlled using the SDN (pin 2). All
other states are controlled using the API commands START_RX, START_TX and CHANGE_STATE.
Table 4.14 (p. 49) shows each of the operating modes with the time required to reach either RX
or TX state as well as the current consumption of each state. The times in Table 4.14 (p. 49) are
measured from the rising edge of nSEL until the chip is in the desired state. This information is included
for reference only since an automatic sequencer moves the chip from one state to another and so
it is not necessary to manually step through each state. Figure 4.29 (p. 49) and Figure 4.30 (p.

49) demonstrate this timing and the current consumption for each radio state as the chip moves from
shutdown or standby to TX and back. Most applications will utilize the standby mode since this provides
the fastest transition response time, maintains all register values, and results in nearly the same current
consumption as shutdown.

Figure 4.28. State Machine Diagram

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Table 4.14. Operating State Response Time and Current Consumption

Response Time to

State / Mode

Current in State / Mode

Rx
Shutdown 30 ms 30 ms 30 nA
Standby 504 ps 516 ps 40 nA
SPI Active 288 us 296 us 1.5mA
Ready 108 ps 120 ps 1.8 mA
Tx Tune 60 ps 6.8 mA
Rx Tune 84 ps 7.1 mA
TX 132 ps 18 mA @ +10 dBm
Rx 120 ps 108 ps 10.9 mA

Figure 4.29. Start-Up Timing and Current Consumption using Shutdown State

TH=19m&

Tune =1 00u=l T Sma

Shuid cvn =004

Standy = 10us{E5INA

p’ Shutdown = 300A

Figure 4.30. Start-Up Timing and Current Consumption using Standby State

TH=19m&

Tune =1 00u=S 7 3ma

u

Ready =300us@ SmA
g Innush = Sus@mA .
.,

Standy =SMA \ﬁl

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

4.2.4.2.1 Shutdown State

The shutdown state is the lowest current consumption state of the device and is entered by driving SDN
(Pin 2) high. In this state, all register contents are lost and there is no SPI access. To exit this mode,
drive SDN low. The device will then initiate a power on reset (POR) along with internal calibrations.
Once this POR period is complete, the POWER_UP command is required to initialize the radio and the
configuration can then be loaded into the device. The SDN pin must be held high for at least 10 us before
driving it low again to insure the POR can be executed correctly. The shutdown state can be used to
fully reset the part. If POR timing and voltage requirements cannot be met, it is highly recommended
that SDN be controlled using the host processor rather than tying it to GND on the board.

4.2.4.2.2 Standby State

The standby state has similar current consumption to the shutdown state but retains all register values,
allowing for a much faster response time. Because of these benefits, most applications will want to use
standby mode rather than shutdown. The standby state is entered by using the CHANGE_STATE API
command. While in this state, the SPI is accessible but any SPI event will automatically transition the
chip to the SPI active state. After the SPI event, the host will need to re-command the device to standby
mode.

4.2.4.2.3 SPI| Active State

The SPI active state enables the device to process any SPI events, such as APl commands. In this state,
the SPI and boot up oscillator are enabled. The SPI active state is entered by using the CHANGE_STATE
command or automatically through an SPI event while in standby mode. If the SPI active state was
entered automatically from standby mode, a CHANGE_STATE command will be needed to return the
device to standby mode.

4.2.4.2.4 Power on Reset

A Power On Reset (POR) sequence is used to boot the device up from a fully off or shutdown state. To
execute this process, VDD must ramp within 1 ms and must remain applied to the device for at least 10
ms. If VDD is removed, then it must stay below 0.15 V for at least 10 ms before being applied again.
Refer to Figure 4.31 (p. 50) and Table 4.15 (p. 51) for details.

Figure 4.31. POR Timing Diagram

VD D
VR RH \ [
VR RL
Time
tsr | teory

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

Table 4.15. POR Timing

tPORH 10 ms
tPORL 10 ms
VRRH 90%*Vvdd \%

VRRL 0 150 mV
tSR 1 ms

4.2.4.2.5 TX State

The TX state is used whenever the device is required to transmit data. It is entered using either
the START_TX or CHANGE_STATE command. With the START_TX command, the next state can
be defined to insure optimal timing. When either command is sent to enter TX state, an internal
sequencer automatically takes care of all actions required to move between states with no additional
user commands needed. Examples of the timing of this transition can be seen in Figure 4.29 (p. 49)
and Figure 4.30 (p. 49). The specific sequencer controlled events that take place during this time can
include enable internal LDOs, start up crystal oscillator, enable PLL, calibrate VCO/PLL, active power
amplifier, and transmit packet.

Figure 4.32 (p. 51) shows an example of the commands and timing for the START_TX command.

CTS will go high as soon as the sequencer puts the part into TX state. As the sequencer is stepping
through the events listed above, CTS will be low and no new commands or property changes are allowed.
If the nIRQ is used to monitor the current state, there will be a slight delay caused by the internal hardware
from when the event actually occurs to when the transition occurs on the nIRQ. The time from entering
TX state to when the nIRQ will transition is 13 ps. If a GPIO is programmed for TX state or used as
control for a transmit/receive switch (TR switch), there is no delay.

Figure 4.32. START_TX Commands and Timing

| | | | |
crs | I | | | |
| | | | |
| | | | | | |
T T T T T
R | | | | |
| | | | | | |
| | | | | | |
SDI '—< START_TX 1 T T T T T
| | | | | |
1 | 1 1 | 1
Current State YYY State >< Tx State X TXCOMPLETE_STATE

T | T T | T
| | | | | |

FRR YYY State X Tx Sate X TXCOMPLETE_STATE

nIRQ

GPIOx — TX state

i e g

4.2.4.2.6 RX State

The RX state is used whenever the device is required to receive data. It is entered using either
the START_RX or CHANGE_STATE commands. With the START_RX command, the next state can
be defined to insure optimal timing. When either command is sent to enter RX state, an internal
sequencer automatically takes care of all actions required to move between states with no additional
user commands needed. The sequencer controlled events can include enable the digital and analog
LDOs, start up the crystal oscillator, enable PLL, calibrate VCO, enable receiver circuits, and enable
receive mode. The device will also automatically set up all receiver features such as packet handling
based upon the initial configuration of the device.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

4.2.4.3 Interrupts

The EZRadio is capable of generating an interrupt signal when certain events occur. The chip notifies
the microcontroller that an interrupt event has occurred by setting the nIRQ output pin LOW = 0. This
interrupt signal will be generated when any one (or more) of the interrupt events occur. The nIRQ pin
will remain low until the microcontroller reads the Interrupt Status Registers. The nIRQ output signal will
then be reset until the next change in status is detected.

The interrupt sources are grouped into three categories: packet handler, chip status, and modem. The
individual interrupts in these groups can be enabled/disabled in the interrupt property registers, 0x0101,
0x0102, and 0x0103. An interrupt must be enabled for it to trigger an event on the nIRQ pin. The interrupt
group must be enabled as well as the individual interrupts in API property 0x0100.

» Chip status

* Modem status

» Packet handler status
» Packet sent

» Packet received

e CRC error

* Invalid preamble detected
« Invalid sync detected

» Preamble detected

* Sync detected

» State change

» Command error

e Chip ready

* TX FIFO almost empty
* RX FIFO almost full

* RSSI interrupt

4.2.4.4 GPIO

Four General Purpose 10 (GPIO) pins are available for use in the application. The GPIOs are configured
using the GPIO_PIN_CFG command. GPIO pins 0 and 1 should be used for active signals such as
data or clock. GPIO pins 2 and 3 have more susceptibility to generating spurious components in the
synthesizer than pins 0 and 1. The drive strength of the GPIO's can be adjusted with the GEN_CONFIG
parameter in the GPIO_PIN_CFG command. By default, the drive strength is set to the minimum. The
default configuration and the state of the GPIO during shutdown are shown in Table 4.16 (p. 53). For
a complete list of the GPIO options, please refer to the EZRadio APl documentation zip file available
from www.silabs.com.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

Table 4.16. GPIOs

GPIO0 0 POR
GPIO1 0 CTS
GPI102 0 POR
GPIO3 0 POR
niRQ Resistive VDD pull-up niRQ
SDO Resistive VDD pull-up SDO
SDI High Z SDI
SCLK High Z SCLK
NSEL High Z NSEL

4.2.5 Data Handling and Packet Handler

4.2.5.1 RX and TX FIFOs

Two 64-byte FIFOs are integrated into the chip, one for RX and one for TX. Writing to command register
66h loads data into the TX FIFO and reading from command register 77h reads data from the RX FIFO.
For packet lengths greater than 64 bytes, RX_FIFO_ALMOST_FULL and TX_FIFO_ALMOST _EMPTY
status bits and interrupts can be used to manage the FIFO. The maximum payload length supported in
packet handler mode is 255 bytes.

The EZRadio includes integrated packet handler features such as preamble and sync word detection as
well as CRC calculation. This allows the chip to qualify and synchronize with legitimate transmissions
independent of the microcontroller. In this setup, the preamble and sync word length can be modified
and the sync word pattern can be selected. If the preamble is greater than or equal to 4 bytes, the device
uses the preamble detection circuit with a 2-byte detection threshold. If the preamble is less than 32 bits,
then at least two bytes of sync word are required plus at least one byte of 0101 pattern (3 bytes total).
In this case, preamble detection is skipped, and only sync word detection is used. For any combination
of preamble and sync word less than three bytes, the device will use direct mode. The general packet
structure is shown in Table 4.17 (p. 53) .

The EZConfig setup also provides the option to select a variable packet length. With this setting, the
receiver is not required to know the packet length ahead of time. The transmitter sends the length of
the packet immediately after the sync word. The packet structure for variable length packets is shown
in Table 4.16 (p. 53) .

Table 4.17. Packet Structure for Fixed Packet Length

0 - 255 Bytes 1 -4 Bytes 1 - 255 Bytes 2 Bytes

4.2.5.2 Direct Mode

In direct mode, the packet handler (including FIFO) is bypassed, and the host MCU must feed the data
stream to the device in TX mode and read out the data stream in RX mode via GPIOs. The host MCU
will process the data and perform packet handler functions. This is commonly used to support legacy
implementations where host MCU software exists or to support non-standard packet structures. Some
examples are packets with non 1010 preamble pattern, no preamble or sync word, or sync word with
no edge transitions.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

5 System Processor

What?
1(2 3@
The industry leading Cortex-M3 processor

from ARM is the CPU in the EZR32LG
wireless microcontrollers.

sinininininininlnls Why?

CM3 Core

The ARM Cortex-M3 is designed for
exceptional short response time, high
code density, and high 32-bit throughput
while maintaining a strict cost and power
consumption budget.

32- bit ALU

Single cycle

Hardware divider 32- bit multiplier

Thumb & Thumb- 2

Control Logic Decode

How?

Combined with the ultra low energy
peripherals available, the Cortex-M3 makes
the EZR32LG devices perfect for 8- to 32-
bit applications. The processor is featuring a
Harvard architecture, 3 stage pipeline, single
cycle instructions, Thumb-2 instruction set
support, and fast interrupt handling.

Instruction Interface Data Interface

Y

OO0 Oononoon

A

NVIC Interface Memory Protection Uni

IO rrirr

v
OO0 D000 OO

5.1 Introduction

The ARM Cortex-M3 32-bit RISC processor provides outstanding computational performance and
exceptional system response to interrupts while meeting low cost requirements and low power
consumption.

The ARM Cortex-M3 implemented is revision r2p1.

5.2 Features

» Harvard Architecture
» Separate data and program memory buses (No memory bottleneck as for a single-bus system)
» 3-stage pipeline
* Thumb-2 instruction set
» Enhanced levels of performance, energy efficiency, and code density
» Single-cycle multiply and efficient divide instructions
» 32-bit multiplication in a single cycle
» Signed and unsigned divide operations between 2 and 12 cycles
» Atomic bit manipulation with bit banding
» Direct access to single bits of data
» Two 1MB bit banding regions for memory and peripherals mapping to 32MB alias regions
» Atomic operation which cannot be interrupted by other bus activities
» 1.25 DMIPS/MHz
* Memory Protection Unit
» Up to 8 protected memory regions
» 24-bit System Tick Timer for Real-Time Operating System (RTOS)
» Excellent 32-bit migration choice for 8/16 bit architecture based designs
» Simplified stack-based programmer's model is compatible with traditional ARM architecture and
retains the programming simplicity of legacy 8- and 16-bit architectures

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

» Unaligned data storage and access
» Continuous storage of data requiring different byte lengths
» Data access in a single core clock cycle
* Integrated power modes
» Sleep Now mode for immediate transfer to low power state
» Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 Ability to extend power savings to other system components
» Optimized for low latency, nested interrupts

5.3 Functional Description

For a full functional description of the ARM Cortex-M3 (r2pl) implementation in the EZR32LG family,
the reader is referred to the EFM32 Cortex-M3 Reference Manual.

5.3.1 Interrupt Operation

Figure 5.1. Interrupt Operation

Module Cortex- M3 NVIC

[s | [rem | e] K

[SETENA[n)/ CLRENA[N] |

A 4 Active interrupt
set clear Interrupt

Interrupt » N\ | IRQ
condition IFn] --ﬁ_/ » = cletr l”Dluest’
T SETPEND[n]/ CLRPEND[n]

Software generated interrupt

The EZR32LG devices have up to interrupt request lines (IRQ) which are connected to the Cortex-M3.
Each of these lines (shown in Table 5.1 (p. 55)) are connected to one or more interrupt flags in one
or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible
to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its
own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the
IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/
CLRPEND bits in ISPRO/ICPRO) in the Cortex-M3 NVIC. The pending bit is then qualified with an enable
bit (set/cleared with SETENA/CLRENA bits in ISERO/ICERO) before generating an interrupt request to
the core. Figure 5.1 (p. 55) illustrates the interrupt system. For more information on how the interrupts
are handled inside the Cortex-M3, the reader is referred to the EFM32 Cortex-M3 Reference Manual.

Table 5.1. Interrupt Request Lines (IRQ)

0 DMA

1 GPIO_EVEN

2 TIMERO

3 USARTO_RX

4 USARTO_TX

5 USB

6 ACMPO/ACMP1
7 ADCO

8 DACO

9 12C0

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

IRQ # Source ‘
10 12C1

11 GPIO_ODD
12 TIMER1

13 TIMER2

14 TIMER3

15 USART1_RX
16 USART1_TX
17 LESENSE
18 USART2_RX
19 USART2_TX
20 UARTO_RX
21 UARTO_TX
22 UART1_RX
23 UART1_TX
24 LEUARTO

25 LEUART1

26 LETIMERO
27 PCNTO

28 PCNT1

29 PCNT2

30 RTC

31 BURTC

32 CMU

33 VCMP

34 LCD

35 MSC

36 AES

37 EBI

38 EMU

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

6 Memory and Bus System

What?

A low latency memory system, including low
‘ energy flash and RAM with data retention,
@ makes extended use of low-power energy-

modes possible.

Why?
RAM retention reduces the need for storing
data in flash and enables frequent use of the
(:| ultra low energy modes EM2 and EM3 with
Flash . .
ARM Cortex- M3 as little as 0.65 pA current consumption.
I RAM How?
Low energy and non-volatile flash memory
DMA Controller stores program and application data
in all energy modes and can easily be

reprogrammed in system. Low leakage RAM,
with data retention in EMO to EM3, removes
the data restore time penalty, and the DMA
ensures fast autonomous transfers with
predictable response time.

6.1 Introduction

The EZR32LG contains an AMBA AHB Bus system allowing bus masters to access the memory mapped
address space. A multilayer AHB bus matrix, using a Round-robin arbitration scheme, connects the
master bus interfaces to the AHB slaves (Figure 6.1 (p. 57)). The bus matrix allows several AHB
slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are
accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The AHB bus masters are:

» Cortex-M3 ICode: Used for instruction fetches from Code memory (0x00000000 - OX1FFFFFFF).
» Cortex-M3 DCode: Used for debug and data access to Code memory (0x00000000 - OxX1FFFFFFF).

» Cortex-M3 System: Used for instruction fetches, data and debug access to system space
(0x20000000 - OXDFFFFFFF).

« DMA: Can access SRAM, Flash and peripherals (0x00000000 - OXDFFFFFFF).

* USB DMA: Can access SRAM and Flash (0x00000000 - Ox3FFFFFFF), and the AHB-peripherals:
USB and AES.

Figure 6.1. EZR32LG Bus System

6.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M3 into the system
memory map shown by Figure 6.2 (p. 58)

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

Figure 6.2. System Address Space

0x40060400 - OXTTTTrfe
0x400€0000 P
0x400cc400 S
0x400cc000 \ 0xe0100000
0x400ca400 Oxe00T FTTT
0x400ca000 AMU /\ M3 Peripheral 2
0x400c8400 N CMS3 Peripherals ~
gx“ggcgogg 0xe0000000 ~
030026300 EMU \ OxAfFFTTTT
0x400c4400 \ 0xe0100000
0x400¢4000 USB \ CM3 ROM Table
Ox40052000 DMA Ox44000000 0xe00ff000
0x400c0400 Ox43fFFFff \ 0xe0042000
MSC
) : ETM
g:zgg;gggg — \ Peripherals (bit-band) \ 0 0xe0041000
ngggggggg A 9x42000000 0xe0040000
X
0x40088000 WDOG R ERRARA \ 0xe000f000
System Control Space
0x40086¢00 PCNTZ 0xe000€000
0x40086800 \
PCNTL
0x40086400 0x41000000] 0xe0003000
0x40086000 ECI0 OxA0TTFTTT FPB
0x40084800) 0xe0002000
TEUARTT Peripherals DWT
0x40084400 B 0xe0001000
0x40084000 040000000 \ ™
0x40082400 TG | 0xe0000000
0x40082000 /
prioeLacn)
0x40080400 = 9x22406000 0x10008000
0x40080000 X223 FFTT /
0x40011000) SRAM (32 kB)
TMER3 SRAM (bit-band) / (code space)
0x40010c00 s
0x40010800 D 0x22000000 / 0x10000000
0x40010400 HRs OOLTTFTTT
0x40010000 y /, 0x0fe08800
0x4000e800
UARTL Y DI
040002000 UARTO / | 0x20008000] 0x0fe08000
0x4000cc00 T 0x20007FfF 0x0fe04800
SRAM (32 kB, xOte
0x4000c800 T e ()’ / Lock bits
0x4000c400 TARTRED ata space. / 0x0fe04000
0x4000c000 / ©x20000000
0x4000a800 OXITTTTTTT
0x4000a400 12C1 / 0x0fe00800
12C0 User Data
0x4000a000 Ox0fe00000
0x40007000) / x0fe
0x40006000
0x40004400 5RO 0x00040000
0x40004000 / Code
0x40002400 yeren
0x40002000 / Flash (256 kB)
0x40001800 WL (main block)
0x40001400 ST J
0x40001000 j
0x40000400
0x40000000 NCMP — — 0x00000000

The embedded SRAM is located at address 0x20000000 in the memory map of the EZR32LG. When
running code located in SRAM starting at this address, the Cortex-M3 uses the System bus to fetch
instructions. This results in reduced performance as the Cortex-M3 accesses stack, other data in SRAM
and peripherals using the System bus. To be able to run code from SRAM efficiently, the SRAM is also
mapped in the code space at address 0x10000000. When running code from this space, the Cortex-M3
fetches instructions through the 1/D-Code bus interface, leaving the System bus for data access. The
SRAM mapped into the code space can however only be accessed by the CPU, i.e. not the DMA.

6.2.1 Bit-banding

The SRAM bit-band alias and peripheral bit-band alias regions are located at 0x22000000 and
0x42000000 respectively. Read and write operations to these regions are converted into masked single-
bit reads and atomic single-bit writes to the embedded SRAM and peripherals of the EZR32LG.

The standard approach to modify a single register or SRAM bit in the aliased regions, requires software
to read the value of the byte, half-word or word containing the bit, modify the bit, and then write the byte,
half-word or word back to the register or SRAM address. Using bit-banding, this read-modify-write can
be done in a single atomic operation. As read-writeback, bit-masking and bit-shift operations are not
necessary in software, code size is reduced and execution speed improved.

The bit-band regions allows addressing each individual bit in the SRAM and peripheral areas of the
memory map. To set or clear a bit in the embedded SRAM, write a 1 or a 0 to the following address:

Memory SRAM Area Set/Clear Bit

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

bit_address = 0x22000000 + (address — 0x20000000) x 32 + bit x 4, (6.1)

...the world's most energy friendly wireless MCUs

where address is the address of the 32-bit word containing the bit to modify, and bit is the index of the
bit in the 32-bit word.

To modify a bit in the Peripheral area, use the following address:

Memory Peripheral Area Bit Modification
bit_address = 0x42000000 + (address — 0x40000000) x 32 + bit x 4, (6.2)

where address and bit are defined as above.

Note that the AHB-peripherals USB and AES does not support bit-banding.
6.2.2 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range
according to Table 6.1 (p. 59) , Table 6.2 (p. 59) and Table 6.3 (p. 60) .

Table 6.1. Memory System Core Peripherals

Core peripherals

Address Range Module Name
0xE0041000 - 0XE0081000 ETM
0x400E0000 - 0x400E0400 AES
0x400CA000 - 0x400CA400 RMU
0x400C8000 - 0x400C8400 CMU
0x400C6000 - 0x400C6400 EMU
0x400C4000 - 0x400C4400 uUsB
0x400C2000 - 0x400C4000 DMA
0x400C0000 - 0x400C0400 MSC

Table 6.2. Memory System Low Energy Peripherals

Low Energy peripherals

Address Range Module Name
0x4008C000 - 0x4008C400 LESENSE
0x40088000 - 0x40088400 WDOG
0x40086800 - 0x40086C00 PCNT2
0x40086400 - 0x40086800 PCNT1
0x40086000 - 0x40086400 PCNTO
0x40084400 - 0x40084800 LEUART1
0x40084000 - 0x40084400 LEUARTO
0x40082000 - 0x40082400 LETIMERO
0x40081000 - 0x40081400 BURTC
0x40080000 - 0x40080400 RTC

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

Table 6.3. Memory System Peripherals

0x400CC000 - 0x400CC400 PRS
0x40010C00 - 0x40011000 TIMER3
0x40010800 - 0x40010C00 TIMER2
0x40010400 - 0x40010800 TIMER1
0x40010000 - 0x40010400 TIMERO
0x4000E400 - 0x4000E800 UART1
0x4000E000 - 0x4000E400 UARTO
0x4000C800 - 0x4000CC00 USART2
0x4000C400 - 0x4000C800 USART1
0x4000C000 - 0x4000C400 USARTRFO
0x4000A400 - 0x4000A800 12C1
0x4000A000 - 0x4000A400 12C0
0x40006000 - 0x40007000 GPIO
0x40004000 - 0x40004400 DACO
0x40002000 - 0x40002400 ADCO
0x40001400 - 0x40001800 ACMP1
0x40001000 - 0x40001400 ACMPO
0x40000000 - 0x40000400 VCMP

6.2.3 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters:

Code: CPU instruction or data fetches from the code space
» System: CPU read and write to the SRAM and peripherals
DMA: Access to SRAM, Flash and peripherals

USB DMA: Access to SRAM and Flash

6.2.3.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency
while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not
assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states.

6.2.3.2 Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth
equal to 4 times a single AHB-bus.

The Bus Matrix accepts new transfers initiated by each master in every clock cycle without inserting
any wait-states. The slaves, however, may insert wait-states depending on their internal throughput and
the clock frequency.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

The Cortex-M3, the DMA Controller, and the peripherals run on clocks that can be prescaled separately.
When accessing a peripheral which runs on a frequency equal to or faster than the HFCORECLK, the
number of wait cycles per access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Equal or Faster than HFCORECLK

Ncycles =2+ Nslave cycless (6-3)

where Ngjave cycles 1S the wait cycles introduced by the slave.

When accessing a peripheral running on a clock slower than the HFCORECLK, wait-cycles are
introduced to allow the transfer to complete on the peripheral clock. The number of wait cycles per
access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Slower than CPU

Ncycles = (2 + Nslave cycles) X fHFCORECLK/fHFPERCLKa (6-4)

where Ngjave cycles IS the number of wait cycles introduced by the slave.
For general register access, Ngjave cycles = 1

More details on clocks and prescaling can be found in Chapter 12 (p. 166) .

6.3 Access to Low Energy Peripherals (Asynchronous Registers)

6.3.1 Introduction

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system
is powered off, i.e. in energy mode EM2 and in some cases also EM3. This enables the peripherals to
perform tasks while the system energy consumption is minimal.

The Low Energy Peripherals are:

* Low Energy Timer - LETIMER

* Low Energy UART - LEUART

* Pulse Counter - PCNT

* Real Time Counter - RTC

» Watchdog - WDOG

* Low Energy Sensor Interface - LESENSE
e Backup RTC - BURTC

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low
Energy Peripherals are running on clocks asynchronous to the core clock, there are some constraints
on how register accesses can be done, as described in the following sections.

6.3.1.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized
into the Low Energy clock domain to maintain data consistency and predictable operation. There are
two different synchronization mechanisms on the EZR32LG; immediate synchronization, and delayed
synchronization. Immediate synchronization is available for the RTC, LETIMER and LESENSE, and
results in an immediate update of the target registers. Delayed synchronization is used for the other
Low Energy Peripherals, and for these peripherals, a write operation requires 3 positive edges on the
clock of the Low Energy Peripheral being accessed. Registers requiring synchronization are marked
"Asynchronous" in their description header.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

6.3.1.1.1 Delayed synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using
delayed synchronization, a corresponding busy flag in the <module_name>_SYNCBUSY register (e.g.
LEUART_SYNCBUSY) is set. This flag is set as long as synchronization is in progress and is cleared
upon completion.

Note
Subsequent writes to the same register before the corresponding busy flag is cleared is not
supported. Write before the busy flag is cleared may result in undefined behavior.

In general, the SYNCBUSY register only needs to be observed if there is a risk of multiple
write access to a register (which must be prevented). It is not required to wait until the
relevant flag in the SYNCBUSY register is cleared after writing a register. E.g EM2 can be
entered immediately after writing a register.

See Figure 6.3 (p. 62) for a more detailed overview of the write operation.

Figure 6.3. Write operation to Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

|
|
|
|
Core Clock | : Low Frequ‘ency Clock Low Frequ‘ency Clock
|
» Register 0 » o : - Synchronizer 0 » Register 0 Sync »
> Register 1 » o Synchronizer 1 »- Register 1 Sync »
|
|
|
. | . .
» Register n > o Synchronizer n > Register n Sync >
|
|
1 Synchronization Done
Write[0:n] :
|
| Set 0, | Syncbusy Register 0 |¢-Clear 0, :
| Set 1y, Syncbusy Register 1 |-Clear 1. |
|
’ |
|
. |
Setn y, Syncbusy Register n [«¢-Clearnj |
|
|
|
1

6.3.1.1.2 Immediate synchronization

Contrary to the peripherals with delayed synchronization, data written to peripherals with immediate
synchronization, takes effect in the peripheral immediately. They are updated immediately on the
peripheral write access. If a write is set up close to a peripheral clock edge, the write is delayed to after
the clock edge. This will introduce wait-states on peripheral access. In the worst case, there can be three
wait-state cycles of the HFCORECLK_LE and an additional wait-state equivalent of up to 315 ns.

For peripherals with immediate synchronization, the SYNCBUSY registers are still present and serve two
purposes: (1) commands written to a peripheral with immediate synchronization are not executed before
the first peripheral clock after the write. During this period, the SYNCBUSY flag in the command register
is set, indicating that the command has not yet been executed; (2) to maintain backwards compatibility
with the EFM32G series, SYNCBUSY registers are also present for other registers. These are however,
always 0, indicating that register writes are always safe.

Note
If the application must be compatible with the EFM32G series, all Low Energy Peripherals
should be accessed as if they only had delayed synchronization, i.e. using SYNCBUSY.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

6.3.1.2 Reading

When reading from Low Energy Peripherals, the data is synchronized regardless of the originating clock
domain. Registers updated/maintained by the Low Energy Peripheral are read directly from the Low
Energy clock domain. Registers residing in the core clock domain, are read from the core clock domain.
See Figure 6.4 (p. 63) for a more detailed overview of the read operation.

Note
Writing a register and then immediately reading back the value of the register may give the
impression that the write operation is complete. This is not necessarily the case. Please
refer to the SYNCBUSY register for correct status of the write operation to the Low Energy
Peripheral.

Figure 6.4. Read operation from Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

Core‘CIock Low Frequency Clock Low Frequency Clock
-t Register 0 Synchronizer 0 Register 0 Sync
Register 1 Synchronizer 1 Register 1 Sync
Register n Synchronizer n Register n Sync

T

- HW Status Register 0 -
Read B —_— HW Status Register 1 |« Low Energy
Synchronizer | Peripheral
| : Main
| Function
I .
- — HW Status Register m -
Read Data

6.3.2 FREEZE register

For Low Energy Peripherals with delayed synchronization there is a <module_name>_FREEZE register
(e.g. RTC_FREEZE), containing a bit named REGFREEZE. If precise control of the synchronization
process is required, this bit may be utilized. When REGFREEZE is set, the synchronization process is
halted, allowing the software to write multiple Low Energy registers before starting the synchronization
process, thus providing precise control of the module update process. The synchronization process is
started by clearing the REGFREEZE bit.

Note
The FREEZE register is also present on peripherals with immediate synchronization, but
has no effect.

6.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and
security information. The Flash memory is typically programmed through the debug interface, but can
also be erased and written to from software.

* Up to 256 kB of memory
» Page size of 2048 bytes (minimum erase unit)
e Minimum 20 000 erase cycles

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

» More than 10 years data retention at 85°C
» Lock-bits for memory protection
» Data retention in any state

...the world's most energy friendly wireless MCUs

6.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute
instructions from SRAM, and the DMA may used to transfer data between the SRAM, Flash and
peripherals.

* Up to 32 kB memory
» Bit-band access support
« Data retention of the entire memory in EMO to EM3

6.6 Device Information (DI) Page

The DI page contains calibration values, a unique identification number and other useful data. See the
table below for a complete overview.

Table 6.4. Device Information Page Contents

O0xOFE08020 CMU_LFRCOCTRL Register reset value.

O0xOFE08028 CMU_HFRCOCTRL Register reset value.

OxOFEO08030 CMU_AUXHFRCOCTRL Register reset value.

O0xOFE08040 ADCO_CAL Register reset value.

0x0FE08048 ADCO_BIASPROG Register reset value.

OxOFEO08050 DACO_CAL Register reset value.

OxOFE08058 DACO_BIASPROG Register reset value.

OxOFEO08060 ACMPO_CTRL Register reset value.

OxOFE08068 ACMP1_CTRL Register reset value.

O0xOFE08078 CMU_LCDCTRL Register reset value.

OxOFEO80AO DACO_OPACTRL Register reset value.

OxOFEO80A8 DACO_OPAOFFSET Register reset value.

OxOFEO080BO EMU_BUINACT Register reset value.

OxOFE080B8 EMU_BUACT Register reset value.

0xOFE080CO EMU_BUBODBUVINCAL Register reset value.

OxOFEO80CS8 EMU_BUBODUNREGCAL Register reset value.

OxOFEO81AA MCM_REV_MIN MCM minor revision (0, 1, 2, ...).

OxOFEO81AB MCM_REV_MAJ MCM major revision (A=1, B=2, C=3, ...).

OxOFEO81AC RADIO_REV_MIN Radio minor revision. (0, 1, 2, ...).

OxOFEO081AD RADIO_REV_MAJ Radio major revision. A=1,B=2,C=3, ...).

OxXOFEO81AE RADIO_OPN 4 digit part number for the radio die. Example:
EZR32WG330F256R67 => 4467d.

0XOFE081B0 DI_CRC [15:0]: DI extra data CRC-16,Y,[15:0]: DI data CRC-16.

www.Silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

EZR

...the world's most energy friendly wireless MCUs

OxOFE081B2 CAL_TEMP_O [7:0] Calibration temperature (A°C).

OxOFEO081B4 ADCO_CAL_1Vv25 [14:8]: Gain for 1V25 reference, [6:0]: Offset for 1V25
reference.

0xOFEO081B6 ADCO_CAL_2V5 [14:8]: Gain for 2V5 reference, [6:0]: Offset for 2V5
reference.

OxOFE081B8 ADCO_CAL_VDD [14:8]: Gain for VDD reference, [6:0]: Offset for VDD
reference.

OxOFEO81BA ADCO_CAL_5VDIFF [14:8]: Gain for 5VDIFF reference, [6:0]: Offset for 5VDIFF
reference.

OxOFEO081BC ADCO_CAL_2XVvDD [14:8]: Reserved (gain for this reference cannot be
calibrated), [6:0]: Offset for 2XVDD reference.

OxOFEO81BE ADCO_TEMP_O_READ_1V25 [15:4] Temperature reading at 1V25 reference, [3:0]
Reserved.

OxOFE081C8 DACO_CAL_1V25 [22:16]: Gain for 1V25 reference, [13:8]: Channel 1 offset for
1V25 reference, [5:0]: Channel 0 offset for 1V25 reference.

OxOFEO81CC DACO_CAL_2V5 [22:16]: Gain for 2V5 reference, [13:8]: Channel 1 offset for
2V5 reference, [5:0]: Channel 0 offset for 2V5 reference.

O0xOFEO081D0 DACO_CAL_VDD [22:16]: Reserved (gain for this reference cannot be
calibrated), [13:8]: Channel 1 offset for VDD reference, [5:0]:
Channel 0 offset for VDD reference.

OXOFE081D4 AUXHFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHZ AUXHFRCO band.

OXOFE081D5 AUXHFRCO_CALIB_BAND 7 [7:0]: Tuning for the 6.6 MHZ AUXHFRCO band.

OXOFE081D6 AUXHFRCO_CALIB_BAND_11 [7:0]: Tuning for the 11 MHZ AUXHFRCO band.

OxOFE081D7 AUXHFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHZ AUXHFRCO band.

OXOFE081D8 AUXHFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHZ AUXHFRCO band.

OXOFE081D9 AUXHFRCO_CALIB_BAND_28 [7:0]: Tuning for the 28 MHZ AUXHFRCO band.

O0xOFE081DC HFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHZ HFRCO band.

OXOFE081DD HFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHZ HFRCO band.

OxOFE081DE HFRCO_CALIB_BAND_11 [7:0]: Tuning for the 11 MHZ HFRCO band.

OXOFE081DF HFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHZ HFRCO band.

OXOFEO081EO0 HFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHZ HFRCO band.

OXOFEO081E1 HFRCO_CALIB_BAND_28 [7:0]: Tuning for the 28 MHZ HFRCO band.

OxXOFEO81E7 MEM_INFO_PAGE_SIZE [7:0] Flash page size in bytes coded as 2
((MEM_INFO_PAGE_SIZE + 10) & OxFF). le. the value
OxFF = 512 bytes.

OxOFEO81EE RADIO_ID RADIO_ID[15:0]: EZR32WG/EZR32LG = 1d.

OXOFEO081F0 EUI64_0 EUI64[31:0]: EUI64[63:40] = 0x000B57 (IEEE-MA-L for
Silicon Labs). EUI64[39:0] = Unique number.

OXOFE081F4 EUI64_1 EUI64[63:32]: EUI64[63:40] = 0x000B57 (IEEE-MA-L for
Silicon Labs). EUI64[39:0] = Unique number.

OxOFEO81F8 MEM_INFO_FLASH [15:0]: Flash size, kbyte count as unsigned integer (eg.
128).

OxXOFEO81FA MEM_INFO_RAM [15:0]: Ram size, kbyte count as unsigned integer (eg. 16).

OXOFEO81FC PART_NUMBER [15:0]: EZR32 part number as unsigned integer (eg. 230).

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

DI Address Register Description ‘

OxOFEO81FE PART_FAMILY [7:0]: EZR32 part family number (Gecko = 71, Giant Gecko
=72, Tiny Gecko = 73, Leopard Gecko=74, Wonder
Gecko=75, EZR32WG=120, EZR32LG=121).

OxOFEO81FF PROD_REV [7:0]: EZR32 Production ID.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

7 DBG - Debug Interface

What?
8
The DBG (Debug Interface) is used to

program and debug EZR32LG devices.

Why?
mEnEREnEnEnEnEnEnEN

The Debug Interface makes it easy to re-
program and update the system in the field,
and allows debugging with minimal 1/O pin
usage.

ARM Cortex- M3

How?

The Cortex-M3 supports advanced
debugging features. EZR32LG devices
only use two port pins for debugging or
programming. The internal and external state
of the system can be examined with debug
OO0 oOoOd extensions supporting instruction or data
access break- and watch points.

M rrrr
uuluuuuuuuu

7.1 Introduction

The EZR32LG devices include hardware debug support through a 2-pin serial-wire debug (SWD)
interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition, there is also
a Serial Wire Viewer pin which can be used to output profiling information, data trace and software-
generated messages.

For more technical information about the debug interface the reader is referred to:

* ARM Cortex-M3 Technical Reference Manual
* ARM CoreSight Components Technical Reference Manual
* ARM Debug Interface v5 Architecture Specification

7.2 Features

» Flash Patch and Breakpoint (FPB) unit

» Implement breakpoints and code patches
» Data Watch point and Trace (DWT) unit

» Implement watch points, trigger resources and system profiling
 Instrumentation Trace Macrocell (ITM)

» Application-driven trace source that supports printf style debugging
» Embedded Trace Macrocell v3.5 (ETM)

* Real time instruction and data trace information of the processor

7.3 Functional Description

There are three debug pins and four trace pins available on the device. Operation of these pins are
described in the following section.

7.3.1 Debug Pins

The following pins are the debug connections for the device:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

» Serial Wire Clock input (SWCLK): This pin is enabled after reset and has a built-in pull down.
« Serial Wire Data Input/Output (SWDIO): This pin is enabled after reset and has a built-in pull-up.
» Serial Wire Viewer (SWV): This pin is disabled after reset.

The debug pins can be enabled and disabled through GPIO_ROUTE, see Section 32.3.4.1 (p. 734)
. Please remeberer that upon disabling, debug contact with the device is lost. Also note that, because
the debug pins have pull-down and pull-up enabled by default, leaving them enabled might increase the
current consumption with up to 200 pA if left connected to supply or ground.

7.3.2 Embedded Trace Macrocell v3.5 (ETM)

The ETM makes it possible to trace both instruction and data from the processor in real time. The
trace can be controlled through a set of triggering and filtering resources. The resources include 4
address comparators, 2 data value comparators, 2 counters, a context ID comparator and a sequencetr.
Before enabling the ETM, the AUXHFRCO clock needs to be enabled by setting AUXHFRCOEN in
CMU_OSCENCMD. The trace can be exported through a set of trace pins, which include:

» Trace Clock (TCLK): Functions as a sample clock for the trace. This pin is disabled after reset.
e Trace Data O - Trace Data 3 (TDO-TD3): The data pins provide the compressed trace stream. These
pins are disabled after reset.

For information on how to configure the ETM, see the ARM Embedded Trace Macrocell Architecture
Specification. The Trace Clock and Trace Data pins can be enabled through the GPIO. For more
information on how to enable the ETM Trace pins, the reader is referred to Section 32.3.4.2 (p. 734) .

7.3.3 Debug and EM2/EM3

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 or EM3 will make the system
enter a special EM2. This mode differs from regular EM2 and EM3 in that the high frequency clocks
are still enabled, and certain core functionality is still powered in order to maintain debug-functionality.
Because of this, the current consumption in this mode is closer to EM1 and it is therefore important to
disconnect the debugger before doing current consumption measurements.

7.4 Debug Lock and Device Erase

The debug access to the Cortex-M3 is locked by clearing the Debug Lock Word (DLW) and resetting
the device, see Section 8.3.2 (p. 74) .

When debug access is locked, the debug interface remains accessible but the connection to the Cortex-
M3 core and the whole bus-system is blocked as shown in Figure 7.2 (p. 69). This mechanism is
controlled by the Authentication Access Port (AAP) as illustrated by Figure 7.1 (p. 68). The AAP is
only accessible from a debugger and not from the core.

Figure 7.1. AAP - Authentication Access Port

» DEVICEERASE

ERASEBUSY

Cortex
DLW[3:0] == OxF

SerialWire Authentication L
debug < » SW-DP |€¢—P| Access Port 4—/ » AHB-AP
interface (AAP)

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

The debugger can access the AAP-registers, and only these registers just after reset, for the time of the
AAP-window outlined in Figure 7.2 (p. 69). If the device is locked, access to the core and bus-system
is blocked even after code execution starts, and the debugger can only access the AAP-registers. If the
device is not locked, the AAP is no longer accessible after code execution starts, and the debugger can
access the core and bus-system normally.

Figure 7.2. Device Unlock

Reset
Program
exequﬁon
Locked No access AAP |
—
150 us Program

execution
I

Unlocked No access >< AAP Cortex

]
47 us

If the device is locked, it can be unlocked by writing a valid key to the AAP_CMDKEY register and then
setting the DEVICEERASE bit of the AAP_CMD register via the debug interface. The commands are not
executed before AAP_CMDKEY is invalidated, so this register should be cleared to to start the erase
operation. This operation erases the main block of flash, all lock bits are reset and debug access through
the AHB-AP is enabled. The operation takes 125 ms to complete. Note that the SRAM contents will also
be deleted during a device erase, while the UD-page is not erased.

Even if the device is not locked, the can device can be erased through the AAP, using the above
procedure during the AAP window. This can be useful if the device has been programmed with code that,
e.g., disables the debug interface pins on start-up, or does something else that prevents communication
with a debugger.

If the device is locked, the debugger may read the status from the AAP_STATUS register. When the
ERASEBUSY bit is set low after DEVICEERASE of the AAP_CMD register is set, the debugger may
set the SYSRESETREQ bit in the AAP_CMD register. After reset, the debugger may resume a normal
debug session through the AHB-AP. If the device is not locked, the device erase starts when the AAP
window closes, so it is not possible to poll the status.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

7.5 Register Map

...the world's most energy friendly wireless MCUs

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 AAP_CMD w1 Command Register

0x004 AAP_CMDKEY w1 Command Key Register
0x008 AAP_STATUS R Status Register

O0xOFC AAP_IDR R AAP Identification Register

7.6 Register Description

7.6.1 AAP_CMD - Command Register

Offset

Bit Position

0x000 S|3 || |K|QQ|I|IQ |V |J|RI&E|F|g |83 |8 Y¥|2|8|o | S e “|e

Reset o | o

Access g
oY
£ <

Name m i
@ lw
A
bla

Bit NET[Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 SYSRESETREQ 0 w1 System Reset Request

A system reset request is generated when set to 1. This register is write enabled from the AAP_CMDKEY register.
0 DEVICEERASE 0 w1 Erase the Flash Main Block, SRAM and Lock Bits

When set, all data and program code in the main block is erased, the SRAM is cleared and then the Lock Bit (LB) page is erased.
This also includes the Debug Lock Word (DLW), causing debug access to be enabled after the next reset. The information block
User Data page (UD) is left unchanged, but the User data page Lock Word (ULW) is erased. This register is write enabled from
the AAP_CMDKEY register.

7.6.2 AAP_CMDKEY - Command Key Register

Bit Position
0x004 S |83/ |IJI|Q(V|J |3 |5 |8 |Q|3 | (d|8|o|o|~jow|s|o N0
o
o
]
Reset 8
]
3
Access g
>
]
Name]
|_
x
2
Bit Name Reset Access Description
31:.0 WRITEKEY 0x00000000 w1 CMD Key Register

www.silabs.com

01-13 - EZR32LG Family - d0333_Rev0.90

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

The key value must be written to this register to write enable the AAP_CMD register. After AAP_CMD is written, this register should
be cleared to excecute the command.

Value Mode Description
O0xCFACC118 WRITEEN Enable write to AAP_CMD

7.6.3 AAP_STATUS - Status Register

Offset Bit Position

0x008 S8 |||V |IJI|Q(V|J RIS |5 |82 |33 |d|S|o|o|~|ow|s|o|l~|d]|0

Reset o

Access 4
>
2

Name @
L
)
<
o
W

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 ERASEBUSY 0 R Device Erase Command Status

This bit is set when a device erase is executing.

7.6.4 AAP_IDR - AAP Identification Register

Bit Position
O0xOFC S |83/ |IJI|Q(N|J RIS |5 |83 |d|8|o|o|~|ow|s|o|lN|d]|o
-
o
o
o
Reset]
o
-
x
o
Access x
Name o
Bit Name Reset Access Description
31:.0 ID 0x16E60001 R AAP Identification Register

Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID) .

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

©

01000101011011100110010101110010
01100111011110010010000001001101
01101001011000110111001001101111
00100000011100100111010101101100
01100101011100110010000001110100
01101000011001010010000001110111
01101111011100100110110001100100
00100000011011110110011000100000
01101100011011110111011100101101

‘ 01100101011011100110010101110010

01100111011110010010000001101101
01101001011000110111001001101111
01100011011011110110111001110100
01110010011011110110110001101100
01100101011100100010000001100100
01100101011100110110100101100111
01101110001000010100010101101110

8 MSC - Memory System Controller

What?

The user can perform Flash memory read,
read configuration and write operations
through the Memory System Controller
(MSC) .

Why?

The MSC allows the application code, user
data and flash lock bits to be stored in non-
volatile Flash memory. Certain memory
system functions, such as program memory
wait-states and bus faults are also configured
from the MSC peripheral register interface,
giving the developer the ability to dynamically
customize the memory system performance,
security level, energy consumption and error
handling capabilities to the requirements at
hand.

How?

The MSC integrates a low-energy Flash

IP with a charge pump, enabling minimum
energy consumption while eliminating the
need for external programming voltage to
erase the memory. An easy to use write and
erase interface is supported by an internal,
fixed-frequency oscillator and autonomous
flash timing and control reduces software
complexity while not using other timer
resources.

Application code may dynamically scale
between high energy optimization and
high code execution performance through
advanced read modes.

A highly efficient low energy instruction

cache reduces the number of flash

reads significantly, thus saving energy.
Performance is also improved when wait-
states are used, since many of the wait-states
are eliminated. Built-in performance counters
can be used to measure the efficiency of the
instruction cache.

8.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EZR32LG microcontroller. The
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided
into two blocks; the main block and the information block. Program code is normally written to the main
block. Additionally, the information block is available for special user data and flash lock bits. There is
also a read-only page in the information block containing system and device calibration data. Read and
write operations are supported in the energy modes EMO and EM1.

www.Silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

i A ‘ ' ...the world's most energy friendly wireless MCUs

8.2 Features

» AHB read interface
» Scalable access performance to optimize the Cortex-M3 code interface
» Zero wait-state access up to 16 MHz and one wait-state for up to 32 MHz and two wait-states
for up to 48 MHz
» Advanced energy optimization functionality
e Conditional branch target prefetch suppression
» Cortex-M3 disfolding of if-then (IT) blocks
* Instruction Cache
* DMA read support in EMO and EM1
* Command and status interface
* Flash write and erase
» Accessible from Cortex-M3 in EMO
» DMA write support in EMO and EM1
» Core clock independent Flash timing
« Internal oscillator and internal timers for precise and autonomous Flash timing
« General purpose timers are not occupied during Flash erase and write operations
» Configurable interrupt erase abort
» Improved interrupt predictability
* Memory and bus fault control
» Security features
* Lockable debug access
» Page lock bits
* SW Mass erase Lock bits
» User data lock bits
» End-of-write and end-of-erase interrupts

8.3 Functional Description

The size of the main block is device dependent. The largest size available is 256 kB (128 pages).
The information block has 2048 bytes available for user data. The information block also contains chip
configuration data located in a reserved area. The main block is mapped to address 0x00000000 and
the information block is mapped to address OxOFEOO0000. Table 8.1 (p. 74) outlines how the Flash
is mapped in the memory space. All Flash memory is organized into 2048 byte pages.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Table 8.1. MSC Flash Memory Mapping

Main® 0 0x00000000 Software, debug | Yes User code and data 64 kB - 256 kB
Software, debug | Yes
127 0x0003F800 Software, debug | Yes
Reserved 0x00040000 - Reserved for flash ~24 MB
expansion
Information | O 0xOFEO0000 Software, debug | Yes User Data (UD) 2 kB
0xOFE00800 - Reserved
1 O0xOFEO04000 Write: Software, | Yes Lock Bits (LB) 2 kB
debug
Erase: Debug
only
OxOFE04800 - Reserved
2 0OxOFEO08000 Yes Device Information 2 kB
(o))
OxOFE08800 - Reserved
Reserved O0xOFE10000 - Reserved for flash Rest of code
expansion space

1Block/page erased by a device erase

8.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The
page is erased by the ERASEPAGE command of the MSC_WRITECMD register. Note that the page is
not erased by a device erase operation. The device erase operation is described in Section 7.4 (p. 68) .

8.3.2 Lock Bits (LB) Page Description

This page contains the following information:

* Debug Lock Word (DLW)

» User data page Lock Word (ULW)

* Mass erase Lock Word (MLW)

« Main block Page Lock Words (PLWSs)

The words in this page are organized as shown in Table 8.2 (p. 74) :

Table 8.2. Lock Bits Page Structure

127 DLW
126 ULW
125 MLW
N PLWIN]
1 PLWI1]
0 PLWIO]

www.Silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

_— ’E ...the world's most energy friendly wireless MCUs

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits
are OxF, then debug access is enabled. If the bits are not OxF, then debug access to the core is locked.
See Section 7.4 (p. 68) for details on how to unlock the debug access.

Word 126 is the user page lock word (ULW). Bit O of this word is the User Data Page lock bit. Bit 1 in
this word locks the Lock Bits Page.

Word 125 is the mass erase lock word (MLW). Bit O locks the entire flash. The mass erase lock bits will
not have any effect on device erases initiated from the Authentication Access Port (AAP) registers. The
AAP is described in more detail in Section 7.4 (p. 68) .

There are 32 page lock bits per page lock word (PLW). Bit O refers to the first page and bit 31 refers to
the last page within a PLW. Thus, PLW[0] contains lock bits for page 0-31 in the main block. Similarly,
PLWI[1] contains lock bits for page 32-63 and so on. A page is locked when the bit is 0. A locked page
cannot be erased or written.

The lock bits can be reset by a device erase operation initiated from the Authentication Access Port
(AAP) registers. The AAP is described in more detail in Section 7.4 (p. 68) . Note that the AAP is only
accessible from the debug interface, and cannot be accessed from the Cortex-M3 core.

8.3.3 Device Information (DI) Page

This read-only page holds the calibration data for the oscillator and other analog peripherals from the
production test as well as a unique device ID. The page is further described in Section 6.6 (p. 64) .

8.3.4 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The
values are also available to read from the DI page for later reference by software. Other information
such as the device ID and production date is also stored in the DI page and is readable from software.

8.3.4.1 One Wait-state Access

After reset, the HFCORECLK is normally 14 MHz from the HFRCO and the MODE field of the
MSC_READCTRL register is set to WS1 (one wait-state). The reset value must be WS1 as an
uncalibrated HFRCO may produce a frequency higher than 16 MHz. Software must not select a zero
wait-state mode unless the clock is guaranteed to be 16 MHz or below, otherwise the resulting behavior
is undefined. If a HFCORECLK frequency above 16 MHz is to be set by software, the MODE field of
the MSC_READCTRL register must be set to WS1 or WS1SCBTP before the core clock is switched to
the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register can be set to
WSO or WSOSCBTP, but only after the frequency transition is completed. If the HFRCO is used, wait
until the oscillator is stable on the new frequency. Otherwise, the behavior is unpredictable.

To run at a frequency higher than 32 MHz, WS2 or WS2SCBTP must be selected to insert two wait-
states for every flash access.

8.3.4.2 Zero Wait-state Access

At 16 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-
state access greatly improves code execution performance at frequencies from 16 MHz and below.
By default, the Cortex-M3 uses speculative prefetching and If-Then block folding to maximize code
execution performance at the cost of additional flash accesses and energy consumption.

8.3.4.3 Operation Above 32 MHz

To run at frequencies higher than 32 MHz, MODE in MSC_READCTRL must be set to WS2 or
WS2SCBTP.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

8.3.4.4 Suppressed Conditional Branch Target Prefetch (SCBTP)

MSC offers a special instruction fetch mode which optimizes energy consumption by cancelling Cortex-
M3 conditional branch target prefetches. Normally, the Cortex-M3 core prefetches both the next
sequential instruction and the instruction at the branch target address when a conditional branch
instruction reaches the pipeline decode stage. This prefetch scheme improves performance while one
extra instruction is fetched from memory at each conditional branch, regardless of whether the branch is
taken or not. To optimize for low energy, the MSC can be configured to cancel these speculative branch
target prefetches. With this configuration, energy consumption is more optimal, as the branch target
instruction fetch is delayed until the branch condition is evaluated.

The performance penalty with this mode enabled is source code dependent, but is normally less than
1% for core frequencies from 16 MHz and below. To enable the mode at frequencies from 16 MHz and
below write WSOSCBTP to the MODE field of the MSC_READCTRL register. For frequencies above 16
MHz, use the WS1SCBTP mode, and for frequencies above 32 MHz, use the WS2SCBTP mode. An
increased performance penalty per clock cycle must be expected compared to WSOSCBTP mode. The
performance penalty in WS1SCBTP/WS2SCBTP mode depends greatly on the density and organization
of conditional branch instructions in the code.

8.3.4.5 Cortex-M3 If-Then Block Folding

The Cortex-M3 offers a mechanism known as if-then block folding. This is a form of speculative
prefetching where small if-then blocks are collapsed in the prefetch buffer if the condition evaluates to
false. The instructions in the block then appear to execute in zero cycles. With this scheme, performance
is optimized at the cost of higher energy consumption as the processor fetches more instructions from
memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary
Control Register; see the Cortex-M3 Technical Reference Manual for details. Normally, it is expected
that this feature is most efficient at core frequencies above 16 MHz. Folding is enabled by default.

8.3.4.6 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled
by default, but can be disabled by setting IFCDIS in MSC_READCTRL. When enabled, the instruction
cache typically reduces the number of flash reads significantly, thus saving energy. In most cases a
cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache the data
is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states
are used (i.e. running at frequencies above 16 MHz).

The instruction cache is connected directly to the Cortex-M3 and functions as a memory access filter
between the processor and the memory system, as illustrated in Figure 8.1 (p. 77). The cache
consists of an access filter, lookup logic, a 128x32 SRAM (512 bytes) and two performance counters.
The access filter checks that the address for the access is of an instruction in the code space (instructions
in RAM outside the code space are not cached). If the address matches, the cache lookup logic and
SRAM is enabled. Otherwise, the cache is bypassed and the access is forwarded to the memory system.
The cache is then updated when the memory access completes. The access filter also disables cache
updates for interrupt context accesses if caching in interrupt context is disabled. The performance
counters, when enabled, keep track of the number of cache hits and misses. The cache consists of 16
8-word cachelines organized as 4 sets with 4 ways. The cachelines are filled up continuously one word
at a time as the individual words are requested by the processor. Thus, not all words of a cacheline
might be valid at a given time.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

Figure 8.1. Instruction Cache

Instruction Cache

Cache
ICODE Look-up Logic ICODE

. AHB- Lite Bus o . AHB- Lite Bus‘

- Ll ‘ . Lol

128x32
SRAM

IDCODE

IDCODE | o AHB-Lite B“S. CcopE

MUX Memory Space

Cortex

A
Y

DCODE
AHB- Lite Bus

By default, the instruction cache is automatically invalidated when the contents of the flash is changed
(i.e. written or erased). In many cases, however, the application only makes changes to data in the
flash, not code. In this case, the automatic invalidate feature can be disabled by setting AIDIS in
MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing
1 to INVCACHE in MSC_CMD.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections
of code with very low cache hit-rate more energy-efficient execution can be achieved by disabling the
cache temporarily. To measure the hit-rate of a code-section, the built-in performance counters can
be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD.
This starts the performance counters, counting from 0. At the end of the section, stop the performance
counters by writing 1 to STOPPC in MSC_CMD. The number of cache hits and cache misses for
that section can then be read from MSC_CACHEHITS and MSC_CACHEMISSES respectively. The
total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES. Thus, the
cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES).
When MSC_CACHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES
overflows the CMOF interrupt flag is set. These flags must be cleared explicitly by software. The
range of the performance counters can thus be extended by increasing a counter in the MSC interrupt
routine. The performance counters only count when a cache lookup is performed. If the lookup fails,
MSC_CACHEMISSES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For
example, a cache lookup is not performed if the cache is disabled or the code is executed from RAM
outside the code space. When caching of vector fetches and instructions in interrupt routines is disabled
(ICCDISin MSC_READCTRL is set), the performance counters do not count when these types of fetches
occur (i.e. while in interrupt context).

By default, interrupt vector fetches and instructions in interrupt routines are also cached. Some
applications may get better cache utilization by not caching instructions in interrupt context. This is done
by setting ICCDIS in MSC_READCTRL. You should only set this bit based on the results from a cache
hit ratio measurement. In general, it is recommended to keep the ICCDIS bit cleared. Note that lookups
in the cache are still performed, regardless of the ICCDIS setting - but instructions are not cached when
cache misses occur inside the interrupt routine. So, for example, if a cached function is called from the
interrupt routine, the instructions for that function will be taken from the cache.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless
of the setting of AIDIS in MSC_READCTRL when entering these energy modes. Applications that switch
frequently between EMO and EM2/3 and execute the very same non-looping code almost every time
will most likely benefit from putting this code in RAM. The interrupt vectors can also be put in RAM to
reduce current consumption even further.

The cache also supports caching of instruction fetches from the external bus interface (EBI) when
accessing the EBI through code space. By default, this is enabled, but it can be disabled by setting
EBICDIS in MSC_READCTRL.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

8.3.5 Erase and Write Operations

The AUXHFRCO is used for timing during flash write and erase operations. To achieve correct timing,
the MSC_TIMEBASE register has to be configured according to the settings in CMU_AUXHFRCOCTRL.
BASE in MSC_TIMEBASE defines how many AUXCLK cycles - 1 there is in 1 us or 5 us, depending
on the configuration of PERIOD. To ensure that timing of flash write and erase operations is within the
specification of the flash, the value written to BASE should give at least a 10% margin with respect to
the period, i.e. for the 1 us PERIOD, the number of cycles should at least span 1.1 us, and for the 5 us
period they should span at least 5.5 us. For the 1 MHz band, PERIOD in MSC_TIMEBASE should be
set to 5US, while it should be set to 1US for all other AUXHFRCO bands.

Both page erase and write operations require that the address is written into the MSC_ADDRB register.
For erase operations, the address may be any within the page to be erased. Load the address by
writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written
once when loading the first address. After each word is written the internal address register ADDR
will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the
loaded address is outside the flash and the LOCKED bit of the MSC_STATUS register is set if the
page addressed is locked. Any attempts to command erase of or write to the page are ignored if
INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set
the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS
register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register.
The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of
the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the
WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the
MSC_STATUS register is set.

Itis possible to write words twice between each erase by keeping at 1 the bits that are not to be changed.
Let us take as an example writing two 16 bit values, OXAAAA and 0x5555. To safely write them in the
same flash word this method can be used:

o Write OXFFFFAAAA (word in flash becomes OXFFFFAAAA)
» Write Ox5555FFFF (word in flash becomes Ox5555AAAA)

Note that there is a maximum of two writes to the same word between each erase due to a physical
limitation of the flash.

Note
During a write or erase, flash read accesses will be stalled, effectively halting code
execution from flash. Code execution continues upon write/erase completion. Code residing
in RAM may be executed during a write/erase operation.

Note

The MSC_WDATA and MSC_ADDRSB registers are not retained when entering EM2 or
lower energy modes.

8.3.5.1 Mass erase

A mass erase can be initiated from software using ERASEMAINO in MSC_WRITECMD. This command
will start a mass erase of the entire flash. Prior to initiating a mass erase, MSC_MASSLOCK must be
unlocked by writing 0x631A to it. After a mass erase has been started, this register can be locked again
to prevent runaway code from accidentally triggering a mass erase.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

The regular flash page lock bits will not prevent a mass erase. To prevent software from initiating mass
erases, use the mass erase lock bits in the mass erase lock word (MLW).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

8.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 MSC_CTRL RW Memory System Control Register
0x004 MSC_READCTRL RW Read Control Register

0x008 MSC_WRITECTRL RW Write Control Register

0x00C MSC_WRITECMD w1 Write Command Register

0x010 MSC_ADDRB RW Page Erase/Write Address Buffer
0x018 MSC_WDATA RW Write Data Register

0x01C MSC_STATUS R Status Register

0x02C MSC_IF R Interrupt Flag Register

0x030 MSC_IFS w1 Interrupt Flag Set Register
0x034 MSC_IFC w1 Interrupt Flag Clear Register
0x038 MSC_IEN RW Interrupt Enable Register

0x03C MSC_LOCK RW Configuration Lock Register
0x040 MSC_CMD w1 Command Register

0x044 MSC_CACHEHITS R Cache Hits Performance Counter
0x048 MSC_CACHEMISSES R Cache Misses Performance Counter
0x050 MSC_TIMEBASE RW Flash Write and Erase Timebase
0x054 MSC_MASSLOCK RW Mass Erase Lock Register

8.5 Register Description

8.5.1 MSC_CTRL - Memory System Control Register

Offset Bit Position

0x000 S8R IF|IQQ|I|Q |V [J|R[G8|5|g|a|3|gd|d|S|o|o|~|ow v ||~ |dlo0

Reset

Access E
'_
)

Name 2
LL
%)
>
om

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BUSFAULT 1 RW Bus Fault Response Enable

When this bit is set, the memory system generates bus error response.

Value Mode Description
0 GENERATE A bus fault is generated on access to unmapped code and system space.
1 IGNORE Accesses to unmapped address space is ignored.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

8.5.2 MSC_READCTRL - Read Control Register

ow |5 [a[a]a [x]aa]x[s [s]s]s [o[z]=]2[s [s[o]a]=] o - - ol []«]-[-
Reset 3 o ?
o o
Access E 5 E E E z 5
0
] z w
Name g) g Dl |2 [a)
e =982 |8 g
(.'7) é mlO | < |
%)) w
=)
om
31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
17:16 BUSSTRATEGY 0x0 RW Strategy for bus matrix
Specify which master has low latency to bus matrix.
Value Mode Description
0 CPU
1 DMA
2 DMAEM1
3 NONE
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 RAMCEN 0 RW RAM Cache Enable
Enable instruction caching for RAM in code-space.
6 EBICDIS 0 RW External Bus Interface Cache Disable
Disable instruction cache for external bus interface.
5 ICCDIS 0 RW Interrupt Context Cache Disable
Set this bit to automatically disable caching of vector fetches and instruction fetches in interrupt context. Cache lookup will still be
performed in interrupt context. When set, the performance counters will not count when these types of fetches occur.
4 AIDIS 0 RW Automatic Invalidate Disable
When this bit is set the cache is not automatically invalidated when a write or page erase is performed.
3 IFCDIS 0 RW Internal Flash Cache Disable
Disable instruction cache for internal flash memory.
2:0 MODE 0x1 RW Read Mode

If software wants to set a core clock frequency above 16 MHz, this register must be set to WS1 or WS1SCBTP before the core
clock is switched to the higher frequency. When changing to a lower frequency, this register can be set to WSO or WSOSCBTP
after the frequency transition has been completed. After reset, the core clock is 14 MHz from the HFRCO but the MODE field of
MSC_READCTRL register is set to WS1. This is because the HFRCO may produce a frequency above 16 MHz before it is calibrated.
If the HFRCO is used as clock source, wait until the oscillator is stable on the new frequency to avoid unpredictable behavior.

Value Mode Description

0 WS0 Zero wait-states inserted in fetch or read transfers.

1 WsS1 One wait-state inserted for each fetch or read transfer. This mode is required for a core
frequency above 16 MHz.

2 WSO0SCBTP Zero wait-states inserted with the Suppressed Conditional Branch Target Prefetch
(SCBTP) function enabled. SCBTP saves energy by delaying the Cortex' conditional
branch target prefetches until the conditional branch instruction is in the execute stage.
When the instruction reaches this stage, the evaluation of the branch condition is
completed and the core does not perform a speculative prefetch of both the branch
target address and the next sequential address. With the SCBTP function enabled,
one instruction fetch is saved for each branch not taken, with a negligible performance
penalty.

WS1SCBTP One wait-state access with SCBTP enabled.
WSs2 Two wait-states inserted for each fetch or read transfer. This mode is required for a
core frequency above 32 MHz.

5 WS2SCBTP Two wait-state access with SCBTP enabled.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

8.5.3 MSC_WRITECTRL - Write Control Register

Offset Bit Position
0x008 5|13 |IQ IR IQQLII|Q|V[J|RZ&8 |5 |2 |23 |82 |S|o|o|~|ow |t |mo|n|d]|o
Reset
Access 5 5
|-
3
z
Name 2 E
a2
<
o
L
o]
ox
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 IRQERASEABORT 0 RW Abort Page Erase on Interrupt

When this bit is set to 1, any Cortex interrupt aborts any current page erase operation.

0 WREN 0 RW Enable Write/Erase Controller

When this bit is set, the MSC write and erase functionality is enabled.

8.5.4 MSC_WRITECMD - Write Command Register

Offset Bit Position

R I RN R R NS E B R A A E e A R N A R R R A K
Reset o o o|o|lo|o|o | o
Access g HHEHEE
< =
< = glel8le|g|s
Name g Z Q| E 5 |d o |k
[i4 w w W Wl |g|a
< 9] nlEIEIF|Z]|<
W & FE I
[] 5|33 u
Bit INET) Reset Access Description
31:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
12 CLEARWDATA 0 W1 Clear WDATA state
Will set WDATAREADY and DMA request. Should only be used when no write is active.
11:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8 ERASEMAINO 0 w1 Mass erase region 0
Initiate mass erase of region 0. For devices supporting read-while-write, this is the lower half of the flash. For other devices it is
the entire flash. Before use MSC_MASSLOCK must be unlocked. To completely prevent access from software, clear bit 0 in the
mass erase lock-word (MLW).
7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 ERASEABORT 0 W1 Abort erase sequence
Writing to this bit will abort an ongoing erase sequence.
4 WRITETRIG 0 W1 Word Write Sequence Trigger
Functions like MSC_CMD_WRITEONCE, but will set MSC_STATUS_WORDTIMEOUT if no new data is written to MSC_WDATA
within the 30 ps timeout.
3 WRITEONCE 0 w1 Word Write-Once Trigger

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

Start write of the first word written to MSC_WDATA, then add 4 to ADDR and write the next word if available within a 30 ps timeout.
When ADDR is incremented past the page boundary, ADDR is set to the base of the page.

2 WRITEEND 0 w1 End Write Mode

Write 1 to end write mode when using the WRITETRIG command.

1 ERASEPAGE 0 W1 Erase Page

Erase any user defined page selected by the MSC_ADDRB register. The WREN bit in the MSC_WRITECTRL register must be set
in order to use this command.

0 LADDRIM 0 w1 Load MSC_ADDRB into ADDR

Load the internal write address register ADDR from the MSC_ADDRB register. The internal address register ADDR is incremented
automatically by 4 after each word is written. When ADDR is incremented past the page boundary, ADDR is set to the base of the page.

8.5.5 MSC_ADDRSB - Page Erase/Write Address Buffer

Offset Bit Position
N R I R RN R R N B R A A E e R R N A R R R A K
o
o
5]
Reset 8
8
3
Access 5
m
Name X
[a)
<
Bit Name Reset Access Description
31:0 ADDRB 0x00000000 RW Page Erase or Write Address Buffer

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR register
when the LADDRIM field in MSC_WRITECMD is set. The MSC_ADDR register is not readable. This register is not retained when
entering EM2 or lower energy modes.

8.5.6 MSC_WDATA - Write Data Register

Bit Position

0x018 S| || |K|QQ|I|IT (V| |RISE|S S |8 |3 |GV |T|S|o|o|~|ojw | s |0 |0

o

o

o

o
Reset s

o

(=}

x

o
Access 5

<
Name 'E

[a)

2
Bit Name Reset Access Description
31.0 WDATA 0x00000000 RW Write Data

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

Bit Name

...the world's most energy friendly wireless MCUs

Reset Access Description

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of MSC_STATUS
is set. This register is not retained when entering EM2 or lower energy modes.

8.5.7 MSC_STATUS - Status Register

Offset Bit Position
0x01C S|8N |J|QYQ (I |IQJ [V |J|RIgE|S |8 |8 |3 |QY¥ | |S|o|o|~|ow | |0 ~|d|0
Reset olo|o|d|o|o|o
Access rle || || |x
Ol = | >
g E 3 Qla o
Sl 0 |w|a|lw| >
Name ZIO|s|e|lalx|®
HEA R EYREE
| W < |z |2
olw |x|5|=
S22
&=
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 PCRUNNING 0 R Performance Counters Running
This bit is set while the performance counters are running. When one performance counter reaches the maximum value, this bit
is cleared.
5 ERASEABORTED 0 R The Current Flash Erase Operation Aborted

When set, the current erase operation was aborted by interrupt.

4 WORDTIMEOUT 0 R Flash Write Word Timeout

When this bit is set, MSC_WDATA was not written within the timeout. The flash write operation timed out and access to the
flash is returned to the AHB interface. This bit is cleared when the ERASEPAGE, WRITETRIG or WRITEONCE commands in
MSC_WRITECMD are triggered.

3 WDATAREADY 1 R WDATA Write Ready

When this bit is set, the content of MSC_WDATA is read by MSC Flash Write Controller and the register may be updated with the
next 32-bit word to be written to flash. This bit is cleared when writing to MSC_WDATA.

2 INVADDR 0 R Invalid Write Address or Erase Page

Set when software attempts to load an invalid (unmapped) address into ADDR.

1 LOCKED 0 R Access Locked

When set, the last erase or write is aborted due to erase/write access constraints.

0 BUSY 0 R Erase/Write Busy

When set, an erase or write operation is in progress and new commands are ignored.

8.5.8 MSC_IF - Interrupt Flag Register

Offset Bit Position

0x02C S8 |||V |II|Q(V|J RIS |5 |8 (2|3 |d|S|o|o|~|ow|s|m|l~|d]|0

Reset o|lo|o|o

Access @ o o 24
W (W | w|Ww

Name O|lo|E|@
STl <
0|0 |2 |5

Bit Name Reset Access Description

31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

3 CMOF 0 R Cache Misses Overflow Interrupt Flag
Set when MSC_CACHEMISSES overflows.

2 CHOF 0 R Cache Hits Overflow Interrupt Flag
Set when MSC_CACHEHITS overflows.

1 WRITE 0 R Write Done Interrupt Read Flag
Set when a write is done.

0 ERASE 0 R Erase Done Interrupt Read Flag

Set when erase is done.

8.5.9 MSC_IFS - Interrupt Flag Set Register

Bit Position
0x030 SIS |J|QYQ IV |J |85 |8 |8 |3 QY| |S|o|o|~|ow | s o ~|d|0
Reset o|lo|o | o
Access s|s s
Name é L%L E %J
(SN NE] 2| W

Bit INETE) Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3 CMOF 0 w1 Cache Misses Overflow Interrupt Set

Set the CMOF flag and generate interrupt.
2 CHOF 0 w1 Cache Hits Overflow Interrupt Set

Set the CHOF flag and generate interrupt.
1 WRITE 0 W1 Write Done Interrupt Set

Set the write done bit and generate interrupt.
0 ERASE 0 w1 Erase Done Interrupt Set

Set the erase done bit and generate interrupt.

8.5.10 MSC_IFC - Interrupt Flag Clear Register

Offset Bit Position

0x034 S| IRXIQ I |IQQII]|V [J[R[g& |5 |2 |23 |g8¥ |2 |S|o|o|~ w s |m ||

Reset o|lo|o | o

Access E E E
[T [N L w

Name O|O|EF |9
=S|I |x é
Cl1O1z|m

Bit Name Reset Access Description

31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

3 CMOF 0 w1 Cache Misses Overflow Interrupt Clear

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

Clear the CMOF interrupt flag.

2 CHOF 0 w1 Cache Hits Overflow Interrupt Clear
Clear the CHOF interrupt flag.

1 WRITE 0 W1 Write Done Interrupt Clear

Clear the write done bit.

0 ERASE 0 W1 Erase Done Interrupt Clear

Clear the erase done bit.

8.5.11 MSC_IEN - Interrupt Enable Register

Offset Bit Position

IR R RN R R R S E B R A A E B e R R N A R R R A S

Reset

Access E E 5
LL 1]

Name |6 E 2
=z | I |x ¥
O[O 2| W

Bit Name Reset Access Description

31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

3 CMOF 0 RW Cache Misses Overflow Interrupt Enable

Enable the cache misses performance counter overflow interrupt.

2 CHOF 0 RW Cache Hits Overflow Interrupt Enable

Enable the cache hits performance counter overflow interrupt.

1 WRITE 0 RW Write Done Interrupt Enable

Enable the write done interrupt.

0 ERASE 0 RW Erase Done Interrupt Enable

Enable the erase done interrupt.

8.5.12 MSC_LOCK - Configuration Lock Register

Offset Bit Position
0x03C 5|8 |||V IQQ|II|Q(V|J |3 |58 (2|3 |gs|d|8|o|o|~|ow|s|m|ln|d]|o
o
o
Reset 8
x
o
Access §
>
1]
Name §
o
o
-
Bit NET] Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL, MSC_WRITECTRL and
MSC_TIMEBASE. Write the unlock code to enable access. When reading the register, bit O is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 MSC registers are unlocked.
LOCKED 1 MSC registers are locked.
Write Operation

LOCK 0 Lock MSC registers.
UNLOCK 0x1B71 Unlock MSC registers.

8.5.13 MSC_CMD - Command Register

Bit Position
R RN R N B R A R E R e R N A R R R A K
Reset o|lo|o
f f
Access =z |z
o | O |W
I
Name & & Q
o |lx | <
el I g
° 5|z
Bit INETE) Reset Access Description

31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2 STOPPC 0 W1 Stop Performance Counters

Use this command bit to stop the performance counters.

1 STARTPC 0 W1 Start Performance Counters

Use this command bit to start the performance counters. The performance counters always start counting from 0.

0 INVCACHE 0 W1 Invalidate Instruction Cache

Use this register to invalidate the instruction cache.

8.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Offset Bit Position
oo g g |R|& |8 gl |g ||| a|s|e|a|3|gy |||~ o]~
o
o
Reset 3
(=)
x
o
Access x
0
=
Name I
41|
I
o
¢
o
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0 CACHEHITS 0x00000 R Cache hits since last performance counter start command.

1-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

Bit Name

...the world's most energy friendly wireless MCUs

Reset Access Description

Use to measure cache performance for a particular code section.

8.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Bit Position
I R I S R R R R R E R R A R A A e R R R R R S
o
o
Reset 3
(=}
X
o
Access 14
(%]
L
9]
Name 2}
=
1]
I
o
<
o
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0 CACHEMISSES 0x00000 R Cache misses since last performance counter start command.

Use to measure cache performance for a particular code section.

8.5.16 MSC_TIMEBASE - Flash Write and Erase Timebase

Offset Bit Position
0x050 S |3 |J|QQ|I|IQ [V |J|RIgE|T|g |8 |3 |QY¥ | |S|o|o|~|ow | |0 ~|d]0
o
Reset =} >
o
Access 5 5
a
Name o o
i &
o
Bit NETE) Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 PERIOD 0 RW Sets the timebase period
Decides whether TIMEBASE specifies the number of AUX cycles in 1 us or 5 us. 5 us should only be used with 1 MHz AUXHFRCO
band.
Value Mode Description
0 1uUs TIMEBASE period is 1 us.
1 5US TIMEBASE period is 5 us.
15:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0 BASE 0x10 RW Timebase used by MSC to time flash writes and erases

Should be set to the number of full AUX clock cycles in the period given by MSC_TIMEBASE_PERIOD. l.e. 1.1 us or 5.5. us with
PERIOD cleared or set, respectively. The resetvalue of the timebase matches a 14 MHz AUXHFRCO, which is the default frequency
of the AUXHFRCO.

www.silabs.com

01-13 - EZR32LG Family - d0333_Rev0.90

EZR

...the world's most energy friendly wireless MCUs

8.5.17 MSC_MASSLOCK - Mass Erase Lock Register

Offset Bit Position
0x054 5|82 |VIQQ|II|Q(V|J|RIS3 |5 |82 |3 |QS|Dd|S|o|o|~|ow | o]|
-
o
Reset 8
x
o
Access E
>
1]
Name §
o
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0001 RW Mass Erase Lock

Write any other value than the unlock code to lock access the the ERASEMAINO and ERASEMAIN1 commands. Write the unlock

code 631A to enable access. When reading the register, bit 0 is set when the lock is enabled. Locked by default.

Mode Value Description

Read Operation

UNLOCKED 0 Mass erase unlocked.
LOCKED 1 Mass erase locked.
Write Operation

LOCK 0 Lock mass erase.
UNLOCK 0x631A Unlock mass erase.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

9 DMA - DMA Controller

What?

The DMA controller can move data without
3@ CPU intervention, effectively reducing the
energy consumption for a data transfer.

Why?

The DMA can perform data transfers more
energy efficiently than the CPU and allows
— Flash autonomous operation in low energy modes.
The LEUART can for instance provide full
UART communication in EM2, consuming

DMA o only a few pA by using the DMA to move data
controller P RAM between the LEUART and RAM.

How?

L | Peripherals The DMA controller has multiple highly
configurable, prioritized DMA channels.
Advanced transfer modes such as ping-pong
and scatter-gather make it possible to tailor
the controller to the specific needs of an
application.

9.1 Introduction

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the
system to stay in low energy modes for example when moving data from the USART to RAM. The DMA
controller uses the PL230 uDMA controller licensed from ARM®. Each of the PL230s channels on the
EZR32 can be connected to any of the EZR32 peripherals.

9.2 Features

» The DMA controller is accessible as a memory mapped peripheral
» Possible data transfers include

* RAM/Flash to peripheral

* RAM to Flash

» Peripheral to RAM

 RAM/Flash to RAM
e The DMA controller has 12 independent channels
» Each channel has one (primary) or two (primary and alternate) descriptors
« The configuration for each channel includes

» Transfer mode

* Priority

» Word-count

» Word-size (8, 16, 32 bit)
» The transfer modes include

» Basic (using the primary or alternate DMA descriptor)

1ARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

— A F ...the world's most energy friendly wireless MCUs

» Ping-pong (switching between the primary or alternate DMA descriptors, for continuous data flow
to/from peripherals)
» Scatter-gather (using the primary descriptor to configure the alternate descriptor)
» Each channel has a programmable transfer length
* Channels 0 and 1 support looped transfers
e Channel 0 supports 2D copy
* A DMA channel can be triggered by any of several sources:
e Communication modules (USART, UART, LEUART)
* Timers (TIMER)
* Analog modules (DAC, ACMP, ADC)
» Software
* Programmable mapping between channel number and peripherals - any DMA channel can be
triggered by any of the available sources
* Interrupts upon transfer completion
» Data transfer to/from LEUART in EM2 is supported by the DMA, providing extremely low energy
consumption while performing UART communications

9.3 Block Diagram

An overview of the DMA and the modules it interacts with is shown in Figure 9.1 (p. 91) .

Figure 9.1. DMA Block Diagram

Interrupts

Cortex
AHB
APB block AHB block
Configuration APB . DMA data
AHB to control memory AHB- Lite transfer
APB manoed master
bridge PP interface
registers
Configuration
Error
Peripheral
Channel DMA Core
select REQ/ Channel
I ACK done
— Peripheral
DMA control block

The DMA Controller consists of four main parts:

* An APB block allowing software to configure the DMA controller

* An AHB block allowing the DMA to read and write the DMA descriptors and the source and destination
data for the DMA transfers

» A DMA control block controlling the operation of the DMA, including request/acknowledge signals for
the connected peripherals

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

» A channel select block routing the right peripheral request to each DMA channel

9.4 Functional Description

The DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory
without involvement from the processor core. This can be used to increase system performance by
off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service
peripherals needing more data or having available data. It can also be used to reduce the system energy
consumption by making the DMA work autonomously with the LEUART for data transfer in EM2 without
having to wake up the processor core from sleep.

The DMA Controller contains 12 independent channels. Each of these channels can be connected to any
of the available peripheral trigger sources by writing to the configuration registers, see Section 9.4.1 (p.
92) . In addition, each channel can be triggered by software (for large memory transfers or for
debugging purposes).

What the DMA Controller should do (when one of its channels is triggered) is configured through channel
descriptors residing in system memory. Before enabling a channel, the software must therefore take
care to write this configuration to memory. When a channel is triggered, the DMA Controller will first read
the channel descriptor from system memory, and then it will proceed to perform the memory transfers
as specified by the descriptor. The descriptor contains the memory address to read from, the memory
address to write to, the number of bytes to be transferred, etc. The channel descriptor is described in
detail in Section 9.4.3 (p. 103) .

In addition to the basic transfer mode, the DMA Controller also supports two advanced transfer modes;
ping-pong and scatter-gather. Ping-pong transfers are ideally suited for streaming data for high-speed
peripheral communication as the DMA will be ready to retrieve the next incoming data bytes immediately
while the processor core is still processing the previous ones (and similarly for outgoing communication).
Scatter-gather involves executing a series of tasks from memory and allows sophisticated schemes to
be implemented by software.

Using different priority levels for the channels and setting the number of bytes after which the DMA
Controller re-arbitrates, it is possible to ensure that timing-critical transfers are serviced on time.

9.4.1 Channel Select Configuration

The channel select block allows selecting which peripheral's request lines (dma_req, dma_sreq) to
connect to each DMA channel.

This configuration is done by software through the control registers DMA_CHO CTRL-
DMA_CH11 CTRL, with SOURCESEL and SIGSEL components. SOURCESEL selects which
peripheral to listen to and SIGSEL picks which output signals to use from the selected peripheral.

All peripherals are connected to dma_req. When this signal is triggered, the DMA performs a number
of transfers as specified by the channel descriptor (2R). The USARTSs are additionally connected to the
dma_sreq line. When only dma_sreq is asserted but not dma_req, then the DMA will perform exactly
one transfer only (given that dma_sreq is enabled by software).

Note
A DMA channel should not be active when the clock to the selected peripheral is off.

9.4.2 DMA control

9.4.2.1 DMA arbitration rate

You can configure when the controller arbitrates during a DMA transfer. This enables you to reduce the
latency to service a higher priority channel.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

The controller provides four bits that configure how many AHB bus transfers occur before it re-arbitrates.
These bits are known as the R_power bits because the value you enter, R, is raised to the power of two
and this determines the arbitration rate. For example, if R =4 then the arbitration rate is 2* that is, the
controller arbitrates every 16 DMA transfers.

Table 9.1 (p. 93) lists the arbitration rates.

Table 9.1. AHB bus transfer arbitration interval

R_power Arbitrate after x DMA transfers
b0000 x=1
b0001 X=2
b0010 x=4
b0011 x=8
b0100 x=16
b0101 x=32
b0110 X=64
b0111 x=128
b1000 x =256
b1001 x=512

b1010-b1111 x=1024

Note
You must take care not to assign a low-priority channel with a large R_power because this
prevents the controller from servicing high-priority requests, until it re-arbitrates.

The number of dma transfers N that need to be done is specified by the user When N > 2% and i |s not an
integer multiple of 2% then the controller always performs sequences of 2R transfers until N < 2% remain
to be transferred. The controller performs the remaining N transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See Section 9.4.3.3 (p.
106) for more information about the location of the R_power bits in the data structure.

9.4.2.2 Priority

When the controller arbitrates, it determines the next channel to service by using the following
information:

 the channel number
« the priority level, default or high, that is assigned to the channel.

You can configure each channel to use either the default priority level or a high priority level by setting
the DMA_CHPRIS register.

Channel number zero has the highest priority and as the channel number increases, the priority of a
channel decreases. Table 9.2 (p. 93) lists the DMA channel priority levels in descending order of
priority.

Table 9.2. DMA channel priority

Channel Priority level Descending order of
number setting channel priority
0 High Highest-priority DMA channel

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

Channel Priority level Descending order of
number setting channel priority
1 High -

2 High -

3 High -

4 High -

5 High -

6 High -

7 High -

8 High -

9 High -

10 High -

11 High -

0 Default -

1 Default -

2 Default -

3 Default -

4 Default -

5 Default -

6 Default -

7 Default -

8 Default -

9 Default -

10 Default -

11 Default Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. Figure 9.2 (p.
95) shows the process it uses to determine which DMA transfer to perform next.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

Figure 9.2. Polling flowchart

(Start polling)

<

Y

Is there
a channel
request ?

Yes

Are any
channel requests
using a high priority-
level ?

Yes

| ,

Select channel that has
the lowest channel
number and is set to

high priority- level

v
(Start DMA transfer)

Select channel that has
the lowest channel
number

9.4.2.3 DMA cycle types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the cycle_ctrl bits as
Table 9.3 (p. 95) lists.

Table 9.3. DMA cycle types

cycle_ctrl Description

b000 Channel control data structure is invalid

b001 Basic DMA transfer

b010 Auto-request

b011 Ping-pong

b100 Memory scatter-gather using the primary data structure

b101 Memory scatter-gather using the alternate data structure

b110 Peripheral scatter-gather using the primary data structure

b111 Peripheral scatter-gather using the alternate data structure
Note

The cycle_ctrl bits are located in the channel_cfg memory location that Section 9.4.3.3 (p.
106) describes.

For all cycle types, the controller arbitrates after 2% DMA transfers. If you set a low-priority channel with
alarge 2R value then it prevents all other channels from performing a DMA transfer, until the low-priority
DMA transfer completes. Therefore, you must take care when setting the R_power, that you do not
significantly increase the latency for high-priority channels.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

9.4.2.3.1 Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent it from repeating
the same DMA cycle.

9.4.2.3.2 Basic

In this mode, you configure the controller to use either the primary or the alternate data structure. After
you enable the channel C and the controller receives a request for this channel, then the flow for this
DMA cycle is as follows:

1. The controller performs 2R transfers. If the number of transfers remaining becomes zero, then the
flow continues at step 3 (p. 96) .

2. The controller arbitrates:
« if a higher-priority channel is requesting service then the controller services that channel
« if the peripheral or software signals a request to the controller then it continues at step 1 (p. 96) .

3. The controller sets dna_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

9.4.2.3.3 Auto-request

When the controller operates in this mode, it is only necessary for it to receive a single request to enable
it to complete the entire DMA cycle. This enables a large data transfer to occur, without significantly
increasing the latency for servicing higher priority requests, or requiring multiple requests from the
processor or peripheral.

You can configure the controller to use either the primary or the alternate data structure. After you enable
the channel C and the controller receives a request for this channel, then the flow for this DMA cycle
is as follows:

1. The controller performs 2R transfers for channel C. If the number of transfers remaining is zero the
flow continues at step 3 (p. 96) .

2. The controller arbitrates. When channel C has the highest priority then the DMA cycle continues at
step 1 (p. 96) .

3. The controller sets dna_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

9.4.2.3.4 Ping-pong

In ping-pong mode, the controller performs a DMA cycle using one of the data structures (primary or
alternate) and it then performs a DMA cycle using the other data structure. The controller continues to
switch from primary to alternate to primary... until it reads a data structure that is invalid, or until the
host processor disables the channel.

Figure 9.3 (p. 97) shows an example of a ping-pong DMA transaction.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

Figure 9.3. Ping-pong example

Task A: Primary, cycle_ctrl = b011,2%=4,N=6

Task A
Request—»
R t—>
eques N dma_done[C]
Task B: Alternate, cycle_ctrl = b011, 2f= 4, N = 1\2\
Task B
Request—»
Request—»
Request—»
dma_done[C]
—
Task C: Primary, cycle_ctrl = b011,2%= 2, N= 2 v/
Request—» Task €
q - dma_done[C]
Task D: Alternate, cycle_ctrl = b011, 2R= 4,N= \\
Task D
Request—»
—>
Request dma_done[C]
Task E Primary, cycle_ctrl = b011, 2"= 4, N= 7 V/
Task E
Request—»
Request—»
- dma_done[C]

End: Alternate, cycle_ctrl = b000

In Figure 9.3 (p. 97) :

Task A

=

. The host processor configures the primary data structure for task A.

2. The host processor configures the alternate data structure for task B. This enables the
controller to immediately switch to task B after task A completes, provided that a higher
priority channel does not require servicing.

. The controller receives a request and performs four DMA transfers.

4. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

. The controller performs the remaining two DMA transfers.

6. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

w

ol

After task A completes, the host processor can configure the primary data structure for task C. This
enables the controller to immediately switch to task C after task B completes, provided that a higher
priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority then task B
commences:

Task B 7. The controller performs four DMA transfers.
8. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

9. The controller performs four DMA transfers.

10The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

11The controller performs the remaining four DMA transfers.

12The controller sets drma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task B completes, the host processor can configure the alternate data structure for task D.

After the controller receives a new request for the channel and it has the highest priority then task C
commences:

Task C 13The controller performs two DMA transfers.
14The controller sets dnma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task C completes, the host processor can configure the primary data structure for task E.

After the controller receives a new request for the channel and it has the highest priority then task D
commences:

Task D 15The controller performs four DMA transfers.
16The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
17The controller performs the remaining DMA transfer.

18The controller sets drma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After the controller receives a new request for the channel and it has the highest priority then task E
commences:

Task E 19The controller performs four DMA transfers.
20The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
21The controller performs the remaining three DMA transfers.
22The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

If the controller receives a new request for the channel and it has the highest priority then it attempts to
start the next task. However, because the host processor has not configured the alternate data structure,
and on completion of task D the controller set the cycle_ctrl bits to b000, then the ping-pong DMA
transaction completes.

Note
You can also terminate the ping-pong DMA cycle in Figure 9.3 (p. 97) , if you configure
task E to be a basic DMA cycle by setting the cycle_ctrl field to 3'b001.

9.4.2.3.5 Memory scatter-gather
In memory scatter-gather mode the controller receives an initial request and then performs four DMA

transfers using the primary data structure. After this transfer completes, it starts a DMA cycle using the
alternate data structure. After this cycle completes, the controller performs another four DMA transfers

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

using the primary data structure. The controller continues to switch from primary to alternate to primary...
until either:

* the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller only asserts dna_done[C] when the scatter-gather transaction completes using an auto-
request cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 9.4 (p. 99) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 9.4. channel_cfg for a primary data structure, in memory scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30} dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[3] next_useburst 0 For a memory scatter-gather DMA cycle, this bit must be set to zero
[2:0] cycle_ctrl b100 Configures the controller to perform a memory scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT® when the controller writes the destination data
[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data
[13:4] n_minus_1 N2 Configures the controller to perform N DMA transfers, where N is a multiple of four

TARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]

%Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 9.4.3.3 (p. 106) for more information.

Figure 9.4 (p. 100) shows a memory scatter-gather example.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

EZR

Figure 9.4. Memory scatter-gather example

...the world's most energy friendly wireless MCUs

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b100, 28 = 4, N = 16.
2. Write the primary source data to memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A |0x0OA000000 0x0AED0000 cycle_ctrl = b101, 2R= 4, N= 3 | OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b101, 28 = 2, N'= 8 [OXXXXXXXXX
Data for Task C |0x0C000000 0x0CED0000 cycle_ctrl = b101, 2R=8,N=5 |OXXXXXXXXX
Data for Task D |0x0D000000 0xO0DEO0000 cycle_ctrl = b010, 2R= 4, N =4 | OXXXXXXXXX

Memory scatter- gather transaction:

Primary Alternate
Copy from Ain
memory, to Alternate
Request —»
— Auto Task A
request®* R
} N=3,2"=4
Auto __ L |
-«
Copy from Bin request
memory, to Alternate
— Auto Task B
request™
Auto request—»
Auto request—» N=8,2%=2
Auto request—»
Auto __
«
Copy from Cin request
memory, to Alternate
— Auto Task C
request®
} N=52%=8
Auto __ L |
P
Copy from D in request
memory, to Alternate
— Auto Task D
request™

— R _
}N =427=4 dma_done[C]
- >

In Figure 9.4 (p. 100) :

Initialization 1. The host processor configures the primary data structure to operate in memory
scatter-gather mode by setting cycle_ctrl to b100. Because a data structure for a
single channel consists of four words then you must set 2Rt0 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a request on
dma_req[] or a manual request from the host processor. The transaction continues as follows:

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.
2. The controller generates an auto-request for the channel and then arbitrates.

Task A 3. The controller performs task A. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
Primary, copy B 4. The controller performs four DMA transfers. These transfers write the alternate

data structure for task B.
5. The controller generates an auto-request for the channel and then arbitrates.

Task B 6. The controller performs task B. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate

data structure for task C.

www.Silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

L E ...the world's most energy friendly wireless MCUs

8. The controller generates an auto-request for the channel and then arbitrates.

Task C 9. The controller performs task C. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate

data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
12The controller generates an auto-request for the channel and then arbitrates.
Task D 13The controller performs task D using an auto-request cycle.
14The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

9.4.2.3.6 Peripheral scatter-gather

In peripheral scatter-gather mode the controller receives an initial request from a peripheral and then it
performs four DMA transfers using the primary data structure. It then immediately starts a DMA cycle
using the alternate data structure, without re-arbitrating.

Note
These are the only circumstances, where the controller does not enter the arbitration
process after completing a transfer using the primary data structure.

After this cycle completes, the controller re-arbitrates and if the controller receives a request from the
peripheral that has the highest priority then it performs another four DMA transfers using the primary
data structure. It then immediately starts a DMA cycle using the alternate data structure, without re-
arbitrating. The controller continues to switch from primary to alternate to primary... until either:

« the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller asserts dma_done[C] when the scatter-gather transaction completes using a basic cycle.
In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 9.5 (p. 101) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 9.5. channel_cfg for a primary data structure, in peripheral scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30] dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[2:0] cycle_ctrl b110 Configures the controller to perform a peripheral scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Field Value Description

[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 NE Configures the controller to perform N DMA transfers, where N is a multiple of four
[3] next_useburst - When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the

alternate transfer completes

!Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 9.4.3.3 (p. 106) for more information.

Figure 9.5 (p. 102) shows a peripheral scatter-gather example.

Figure 9.5. Peripheral scatter-gather example

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b110, 2°= 4, N = 16.
2. Write the primary source data in memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A [0x0OA000000 0x0AE00000 cycle_ctrl = b111, 2R= 4, N =3 [OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b111, 2R=2,N =8 [0xXX00XXX
Data for Task C [0x0C000000 0x0CE00000 cycle_ctrl = b111,2%= 8, N =5 [OXXXXXXXXX
Data for Task D |0x0D000000 0x0DEO000O cycle_ctrl = b001, 2R= 4, N= 4 [OXXXXXXXXX
Peripheral scatter- gather transaction:
Primary Alternate

For all primary to alternate transitions,
the controller does not enter the
arbitration process and immediately

performs the DMA transfer that the
alternate channel control data structure
\—/_\ specifies.
Task A

} N=3,2%=24
<Request—

Copy from Ain

memory, to Alternate
Request—»

Copy from Bin
memory, to Alternate

~—— — A

Request—»
Request—»
Request—»

N=8,2%=2

<Request—

Copy from Cin
memory, to Alternate

}N:S,ZR:S

& Request—

Copy from D in
memory, to Alternate

\—/—\T;skb

— R _
}N =427=4 dma_done[C]
—

In Figure 9.5 (p. 102) :

Initialization 1. The host processor configures the primary data structure to operate in peripheral
scatter-gather mode by setting cycle_ctrl to b110. Because a data structure for a
single channel consists of four words then you must set 2% to 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on
dma_req[] . The transaction continues as follows:

www.Silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

L E ...the world's most energy friendly wireless MCUs

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.
Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy B 4. The controller performs four DMA transfers. These transfers write the alternate
data structure for task B.
Task B 5. The controller performs task B. To enable the controller to complete the task,

the peripheral must issue a further three requests.
6. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate
data structure for task C.
Task C 8. The controller performs task C.

9. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate
data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
Task D 12The controller performs task D using a basic cycle.
13The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

9.4.2.4 Error signaling
If the controller detects an ERROR response on the AHB-Lite master interface, it:

« disables the channel that corresponds to the ERROR
» setsdma_err HIGH.

After the host processor detects that dma_er r is HIGH, it must check which channel was active when
the ERROR occurred. It can do this by:

1. Reading the DMA_CHENS register to create a list of disabled channels.

When a channel asserts drma_done[] then the controller disables the channel. The program running
on the host processor must always keep a record of which channels have recently asserted their
dma_done[] outputs.

2. It must compare the disabled channels list from step 1 (p. 103), with the record of the channels that
have recently set their dma_done[] outputs. The channel with no record of dnma_done[C] being
set is the channel that the ERROR occurred on.

9.4.3 Channel control data structure

You must provide an area of system memaory to contain the channel control data structure. This system
memory must:

» provide a contiguous area of system memory that the controller and host processor can access

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

* have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 9.6 (p. 104) shows the memory that the controller requires for the channel control data structure,
when all 12 channels and the optional alternate data structure are in use.

Figure 9.6. Memory map for 12 channels, including the alternate data structure

Alternate data structure Primary data structure
0x1Co - 0x0Co
Alternate_Ch_11 Primary_Ch_11
0x1B0 - 0x0BO
Alternate_Ch_10 Primary_Ch_10
0x1A0 - 0x0A0
Alternate_Ch_9 Primary_Ch_9
0x190 - 0x090
Alternate_Ch_8 Primary_Ch_8
0x180 - 0x080
Alternate_Ch_7 Primary_Ch_7
0x170 - 0x070
Alternate_Ch_6 Primary_Ch_6
0x160 - 0x060
Alternate_Ch_5 Primary_Ch_5
0x150 - 0x050
Alternate_Ch_4 Primary_Ch_4
0x140 - 0x040
Alternate_Ch_3 Primary_Ch_3 User
0x130 - 0x030 0x00C
Alternate_Ch_2 Primary_Ch_2 Control
Alt te_Ch_1 0x120 Pri Ch_1 0x020 Destination End Point: 0x008
ernate_Ch_: imary_Ch_: estination inter
0x110 - 0x010 - 0x004
Alternate_Ch_0 Primary_Ch_0 Source End Pointer
0x100 0x000 0x000

This structure in Figure 9.6 (p. 104) uses 384 bytes of system memory. The controller uses the lower
8 address bits to enable it to access all of the elements in the structure and therefore the base address
must be at Ox XXXXXXX00.

You can configure the base address for the primary data structure by writing the appropriate value in
the DMA_CTRLBASE register.

You do not need to set aside the full 384 bytes if all dma channels are not used or if all alternate
descriptors are not used. If, for example, only 4 channels are used and they only need the primary
descriptors, then only 64 bytes need to be set aside.

Table 9.6 (p. 104) lists the address bits that the controller uses when it accesses the elements of the
channel control data structure.

Table 9.6. Address bit settings for the channel control data structure

Address bits

(8] [7] [6] [5] [4] [3:0]

A C[3] Cl2] cl o] 0x0, Ox4, or 0x8
Where:
A Selects one of the channel control data structures:

A=0 Selects the primary data structure.
A=1 Selects the alternate data structure.
C[3:0] Selects the DMA channel.

Address[3:0] Selects one of the control elements:
0x0 Selects the source data end pointer.
Ox4 Selects the destination data end pointer.
0x8 Selects the control data configuration.
0xC The controller does not access this address location. If required, you can
enable the host processor to use this memory location as system memory.

Note
It is not necessary for you to calculate the base address of the alternate data structure
because the DMA_ALTCTRLBASE register provides this information.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

Figure 9.7 (p. 105) shows a detailed memory map of the descriptor structure.

Figure 9.7. Detailed memory map for the 12 channels, including the alternate data structure

Unused OxlBCﬂ
Alternate for Control 0x1B8
channel 11 Destination End Pointer | oy 14
Source End Pointer 0X1B0
Alternate
data
Unused 0x11C | structure
Alternate for Control 0x118
channel 1 Destination End Pointer | gy 114
Source End Pointer 0x110
Unused 0x10C
Alternate for Control 0x108
channel 0 Destination End Pointer | gy 104
Source End Pointer Ox100_<
Unused 0Xx0BC
Primary for Control 0x0B8
channel 11 Destination End Pointer | 5y0p4
Source End Pointer 0X0BO
Primary
data
Unused 0x01C | structure
Primary for Control 0x018
channel 1 Destination End Pointer | oy (14
Source End Pointer 0x010
Unused 0x00C
Primary for Control 0x008
channel 0 Destination End Pointer | qy004
Source End Pointer 0x000_)

The controller uses the system memory to enable it to access two pointers and the control information
that it requires for each channel. The following subsections will describe these 32-bit memory locations
and how the controller calculates the DMA transfer address.

9.4.3.1 Source data end pointer

The src_data_end_ptr memory location contains a pointer to the end address of the source data.
Figure 9.7 (p. 105) lists the bit assignments for this memory location.

Table 9.7. src_data_end_ptr bit assignments

Bit Name Description

[31:0] src_data_end_ptr Pointer to the end address of the source data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the source data. The controller reads this memory location when it starts a 27 DMA transfer.

Note
The controller does not write to this memory location.

9.4.3.2 Destination data end pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the destination data.
Table 9.8 (p. 106) lists the bit assignments for this memory location.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

Table 9.8. dst_data_end_ptr bit assignments

Bit Name Description

[31:0] dst _data_end_ptr Pointer to the end address of the destination data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the destination data. The controller reads this memory location when it starts a 2% DMA
transfer.

Note
The controller does not write to this memory location.

9.4.3.3 Control data configuration

For each DMA transfer, the channel_cfg memory location provides the control information for the
controller. Figure 9.8 (p. 106) shows the bit assignments for this memaory location.

Figure 9.8. channel_cfg bit assignments

313029282726252423 2120 1817 1413 4 3 2 0

R _power n_minus_1

I—src_prot_ctrl I—cycle_ctrl
dst_prot_ctrl next_useburst

dst_inc src_inc
dst_size src_size

Table 9.9 (p. 106) lists the bit assignments for this memory location.

Table 9.9. channel_cfg bit assignments

Bit Name Description

[31:30] dst_inc Destination address increment.
The address increment depends on the source data width as follows:
Source data width = byte b00 = byte.
b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

Source data width = halfword b00 = reserved.
b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

Source data width = word b00 = reserved.
b01 = reserved.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

[29:28] dst_size Destination data size.

Note

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

Bit Name Description

You must set dst_size to contain the same value that src_size contains.

[27:26] src_inc Set the bits to control the source address increment. The address increment depends on the
source data width as follows:

Source data width = byte b00 = byte.
b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = halfword b00 = reserved.

b01 = halfword.
b10 = word.

b1l = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = word b00 = reserved.

b01 = reserved.
b10 = word.

b1l = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.

[25:24] src_size Set the bits to match the size of the source data:
b00 = byte
b01 = halfword
b10 = word

b1l = reserved.

[23:21] dst_prot_ctrl Set the bits to control the state of HPROT when the controller writes the destination data.

Bit [23] This bit has no effect on the DMA.
Bit [22] This bit has no effect on the DMA.
Bit [21] Controls the state of HPROT as follows:

0 = HPROT is LOW and the access is non-privileged.

1 = HPROT is HIGH and the access is privileged.

[20:18] src_prot_ctrl Set the bits to control the state of HPROT when the controller reads the source data.

Bit [20] This bit has no effect on the DMA.
Bit [19] This bit has no effect on the DMA.
Bit [18] Controls the state of HPROT as follows:

0 = HPROT is LOW and the access is non-privileged.

1 = HPROT is HIGH and the access is privileged.

[17:14] R_power Set these bits to control how many DMA transfers can occur before the controller re-arbitrates.
The possible arbitration rate settings are:

b0000 Arbitrates after each DMA transfer.
b0001 Arbitrates after 2 DMA transfers.
b0010 Arbitrates after 4 DMA transfers.
b0011 Arbitrates after 8 DMA transfers.
b0100 Arbitrates after 16 DMA transfers.
b0101 Arbitrates after 32 DMA transfers.
b0110 Arbitrates after 64 DMA transfers.
b0111 Arbitrates after 128 DMA transfers.
b1000 Arbitrates after 256 DMA transfers.
b1001 Arbitrates after 512 DMA transfers.

b1010-b1111 Arbitrates after 1024 DMA transfers. This means that no arbitration occurs
during the DMA transfer because the maximum transfer size is 1024.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

=L

R*

...the world's most energy friendly wireless MCUs

Bit

Name

Description

[13:4]

n_minus_1

Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers
that the DMA cycle contains. You must set these bits according to the size of DMA cycle that
you require.

The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
b000000000 = 1 DMA transfer

b000000001 = 2 DMA transfers

b000000010 = 3 DMA transfers

b000000011 = 4 DMA transfers

b000000100 = 5 DMA transfers

b111111111 = 1024 DMA transfers.

The controller updates this field immediately prior to it entering the arbitration process. This
enables the controller to store the number of outstanding DMA transfers that are necessary to
complete the DMA cycle.

(3]

next_useburst

Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a
peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.

Note
Immediately prior to completion of the DMA cycle that the alternate data structure
specifies, the controller sets the chnl_useburst_set [C] bit to O if the number of
remaining transfers is less than 2R The setting of the next_useburst bit controls if the
controller performs an additional modification of the chnl_useburst_set [C] bit.

In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data
structure completes, either:

0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the
chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter-
gather transaction, the controller responds to requests on dma_req[] and dme_sreq[],
when it performs a DMA cycle that uses an alternate data structure.

1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA
cycles in the peripheral scatter-gather transaction, the controller only responds to requests on
dma_r eq[], when it performs a DMA cycle that uses an alternate data structure.

[2:0]

cycle_ctrl

The operating mode of the DMA cycle. The modes are:

b000 Stop. Indicates that the data structure is invalid.

b001 Basic. The controller must receive a new request, prior to it entering the arbitration
process, to enable the DMA cycle to complete.

b010 Auto-request. The controller automatically inserts a request for the appropriate channel
during the arbitration process. This means that the initial request is sufficient to enable
the DMA cycle to complete.

b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After
the DMA cycle completes, it performs a DMA cycle using the other data structure. After
the DMA cycle completes and provided that the host processor has updated the original
data structure, it performs a DMA cycle using the original data structure. The controller
continues to perform DMA cycles until it either reads an invalid data structure or the
host processor changes the cycle_ctrl bits to b0O01 or b010. See Section 9.4.2.3.4 (p.
96) .

b100 Memory scatter/gather. See Section 9.4.2.3.5 (p. 98) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the primary data structure.
b101 Memory scatter/gather. See Section 9.4.2.3.5 (p. 98) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the alternate data structure.
b110 Peripheral scatter/gather. See Section 9.4.2.3.6 (p. 101) .

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the primary data structure.
b111 Peripheral scatter/gather. See Section 9.4.2.3.6 (p. 101) .

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Bit Name Description

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the alternate data structure.

At the start of a DMA cycle, or 2R DMA transfer, the controller fetches the channel_cfg from system
memory. After it performs ZR, or N, transfers it stores the updated channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If it detects a
mismatch in these values, it uses the src_size value for source and destination and when it next updates
the n_minus_1 field, it also sets the dst_size field to the same as the src_size field.

After the controller completes the N transfers it sets the cycle ctrl field to b000, to indicate that the
channel_cfg data is invalid. This prevents it from repeating the same DMA transfer.

9.4.3.4 Address calculation

To calculate the source address of a DMA transfer, the controller performs a left shift operation on the
n_minus_1 value by a shift amount that src_inc specifies, and then subtracts the resulting value from the
source data end pointer. Similarly, to calculate the destination address of a DMA transfer, it performs a
left shift operation on the n_minus_1 value by a shift amount that dst_inc specifies, and then subtracts
the resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination address can be
calculated using the equations:

src_inc =b00 and dst_inc=b00 e« source address = src_data_end_ptr - n_minus_1

» destination address = dst_data_end_ptr - n_minus_1.
src_inc=b01 and dst_inc=b01 < source address = src_data_end_ptr - (n_minus_1 << 1)

» destination address = dst_data_end_ptr - (n_minus_1 << 1).
src_inc=bl10 and dst_inc=b10 < source address = src_data_end_ptr - (n_minus_1 << 2)

» destination address = dst_data_end_ptr - (h_minus_1 << 2).
src_inc=bll and dst inc=bll « source address = src_data_end_ptr

 destination address = dst_data_end_ptr.

Table 9.10 (p. 109) lists the destination addresses for a DMA cycle of six words.

Table 9.10. DMA cycle of six words using a word increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b10, dst_inc=b10, n_minus_1=b101, cycle_ctrl=1

1

End Pointer Count Difference Address
0x2AC 5 0x14 0x298
0x2AC 4 0x10 0x29C
0x2AC 3 0oxC 0x2A0
DMA transfers
0x2AC 2 0x8 0x2A4
0x2AC 1 0x4 0x2A8
0x2AC 0 0x0 0x2AC

Final values of channel_cfg, after the DMA cycle

src_size =b10, dst_inc =b10, n_minus_1 =0, cycle_ctrl=0

 This value is the result of count being shifted left by the value of dst_inc.

Table 9.11 (p. 110) lists the destination addresses for a DMA transfer of 12 bytes using a halfword
increment.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Table 9.11. DMA cycle of 12 bytes using a halfword increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=b1011, cycle_ctrl=1, R_power=b11

End Pointer Count Difference * Address
Ox5E7 11 0x16 0x5D1
Ox5E7 10 0x14 0x5D3
DMA transfers Ox5E7 9 0x12 0x5D5
Ox5E7 8 0x10 0x5D7
Ox5E7 7 OxE 0x5D9
Ox5E7 6 0xC 0x5DB
Ox5E7 5 OxA 0x5DD
Ox5E7 4 0x8 Ox5DF

Values of channel_cfg after 2% DMA transfers

src_size =b00, dst_inc =b01, n_minus_1 =b011, cycle_ctrl=1, R_power=b11

End Pointer Count Difference Address

OX5E7 3 0x6 Ox5E1

Ox5E7 2 0x4 Ox5E3

Ox5E7 1 0x2 Ox5E5
DMA transfers

Ox5E7 0 0x0 Ox5E7

Final values of channel_cfg, after the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=0, cycle_ctrl=0 2, R_power=b11

M This value is the result of count being shifted left by the value of dst_inc.
2pfter the controller completes the DMA cycle it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

9.4.4 Looped Transfers

A regular DMA channel is done when it has performed the number of transfers given by the channel
descriptor. If an application wants a continuous flow of data, one option is to use ping-pong mode,
alternating between two descriptors and having software update one descriptor while the other is being
used. Another way is to use looped transfers.

For DMA channels 0 and 1, looping can be enabled by setting EN in DMA_LOOPO and DMA_LOOP1
respectively. A looping DMA channel will on completion set the respective DONE interrupt flag, but then
reload n_minus_1 in the channel descriptor with the loop width defined by WIDTH in DMA_LOOPXx and
continue transmitting data.

The total length of the transfer is given by the original value of n_minus_1 in the channel descriptor and
WIDTH in DMA_LOOPXx times the number of loops taken. The loop feature can for instance be used to
implement a ring buffer, contiguously overwriting old data when new data is available. To end the loop
clear EN in DMA_LOOPx. The channel will then complete the last loop before stopping.

9.4.5 2D Copy

In addition to looped transfers, DMA channel 0 has the ability to do rectangle transfers, or 2D copy. For
an application working with graphics, this would mean the ability to copy a rectangle of a given width and
height from one picture to another. The DMA also has the ability to copy from linear data to a rectangle,
and from a rectangle to linear data.

To set up rectangle copy for DMA channel 0, configure WIDTH in DMA_LOOPO to one less than
the rectangle width, and HEIGHT in DMA_RECTO to one less than the rectangle height. Then

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

set SRCSTRIDE in DMA_RECTO to the outer rectangle width of the source, and DSTSTRIDE in
DMA_RECTO to the outer rectangle width of the destination rectangle. Finally, the channel descriptor for
channel 0 has to be configured. The source and destination end pointers should be set to the last element
of the first line of the source data and destination data respectively. The number of elements to be
transferred, n_minus_1 should be set equal to WIDTH in DMA_LOOPO. The parameters are visualized
in Figure 9.9 (p. 111) .

Figure 9.9. 2D copy

Source buffer Destination buffer
Source) :
Destination
WIDTH e_nd WIDTH end pointer
pointer
T
m
)]
T
_|
\///V
SRCSTRIDE DSTSTRIDE
- - |

When doing a rectangle copy, the source and destination address of the channel descriptor will be
incremented line for line as the DMA works its way through the rectangle. The operation is done when
the number of lines specified by HEIGHT in DMA_RECTO has been copied. The source and destination
addresses in the channel descriptor will then point at the last element of the source and destination
rectangles.

On completion, the DONE interrupt flag of channel O is set. Looping is not supported for rectangle copy.

In some cases, e.g. when performing graphics operations, it is desirable to create a list of copy operations
and have them executed automatically. This can be done using 2D copy together with the scatter gather
mode of the DMA controller. Set DESCRECT in DMA_CTRL to override SCRSTRIDE and HEIGHT
in DMA_RECTO and WIDTH in DMA_LOOPO by the values in the user part of the DMA descriptor as
shown in Table 9.12 (p. 111). In this way every copy command in the list can specify these parameters
individually.

Table 9.12. User data assignments when DESCRECT is set

Bit Field Description

[30:20] SRCSTRIDE Stride in source buffer

[19:10] HEIGHT Height - 1 of data to be copied

[9:0] WIDTH Width - 1 of data to be copied

With regular 2D copy, the DMA descriptor will be updated as the copy operation proceeds. To be able to
reuse the 2D copy scatter gather list without rewriting source and destination end addresses, set PRDU

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

in DMA_CTRL. This will prevent the address in the descriptor from being updated. In this case RDSCHO
in DMA_RDS must be set and all other bits in DMA_RDS must be cleared. The bits in DMA_RDS make
individual DMA channels remember the source and destination end pointers while active, speeding up
their transfers.

9.4.6 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from , e.g., the LEUART
to occur in EM2. The EMU can wake up the DMA sufficiently long to allow data transfers to occur. See
section "DMA Support" in the LEUART documentation.

9.4.7 Interrupts

The PL230 dma_done[n:0] signals (one for each channel) as well as the dma_err signal, are available as
interrupts to the Cortex-M3 core. They are combined into one interrupt vector, DMA_INT. If the interrupt
for the DMA is enabled in the ARM Cortex-M3 core, an interrupt will be made if one or more of the
interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

9.5 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USARTL1 to
memory location 0x20003420. Assumes that the channel 0 is currently disabled, and that the
DMA_ALTCTRLBASE register has already been configured.

Example 9.1. DMA Transfer

1. Configure the channel select for using USART1 with DMA channel O
a. Write SOURCESEL=0b001101 and SIGSEL=XX to DMA_CHCTRLO
2. Configure the primary channel descriptor for DMA channel 0
a. Write XX (read address of USARTL) to src_data_end_ptr
b. Write 0x20003420 + 40 to dst_data_end_ptr c
c. Write these values to channel_cfg for channel O:
i. dst_inc=b01 (destination halfword address increment)
ii. dst size=b01 (halfword transfer size)
iii. src_inc=b11 (no address increment for source)
iv. src_size=01 (halfword transfer size)
v. dst_prot_ctrl=000 (no cache/buffer/privilege)
vi. src_prot_ctrl=000 (no cache/buffer/privilege)
vii.R_power=b0000 (arbitrate after each DMA transfer)
viiin_minus_1=d20 (transfer 21 halfwords)
ix. next_useburst=b0 (not applicable)
X. cycle_ctrl=b001 (basic operating mode)
3. Enable the DMA
a. Write EN=1 to DMA_CONFIG
4. Disable the single requests for channel O (i.e., do not react to data available, wait for buffer full)
a. Write DMA_CHUSEBURSTS[0]=1
5. Enable buffer-full requests for channel 0
a. Write DMA_CHREQMASKC[0]=1
6. Use the primary data structure for channel 0
a. Write DMA_CHALTCJ[0]=1
7. Enable channel 0
a. Write DMA_CHENS|0]=1

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.6 Register Map

The offset register address is relative to the registers base address.

0x000 DMA_STATUS R DMA Status Registers

0x004 DMA_CONFIG W DMA Configuration Register

0x008 DMA_CTRLBASE RW Channel Control Data Base Pointer Register

0x00C DMA_ALTCTRLBASE R Channel Alternate Control Data Base Pointer Register

0x010 DMA_CHWAITSTATUS R Channel Wait on Request Status Register

0x014 DMA_CHSWREQ w1 Channel Software Request Register

0x018 DMA_CHUSEBURSTS RW1H Channel Useburst Set Register

0x01C DMA_CHUSEBURSTC w1 Channel Useburst Clear Register

0x020 DMA_CHREQMASKS RwW1 Channel Request Mask Set Register

0x024 DMA_CHREQMASKC w1 Channel Request Mask Clear Register

0x028 DMA_CHENS RwW1 Channel Enable Set Register

0x02C DMA_CHENC w1 Channel Enable Clear Register

0x030 DMA_CHALTS RW1 Channel Alternate Set Register

0x034 DMA_CHALTC w1 Channel Alternate Clear Register

0x038 DMA_CHPRIS RW1 Channel Priority Set Register

0x03C DMA_CHPRIC w1 Channel Priority Clear Register

0x04C DMA_ERRORC RW Bus Error Clear Register

OXE10 DMA_CHREQSTATUS R Channel Request Status

OxE18 DMA_CHSREQSTATUS R Channel Single Request Status

0x1000 DMA_IF R Interrupt Flag Register

0x1004 DMA_IFS w1 Interrupt Flag Set Register

0x1008 DMA_IFC w1 Interrupt Flag Clear Register

0x100C DMA_IEN RW Interrupt Enable register

0x1010 DMA_CTRL RW DMA Control Register

0x1014 DMA_RDS RW DMA Retain Descriptor State

0x1020 DMA_LOOPO RWH Channel 0 Loop Register

0x1024 DMA_LOOP1 RW Channel 1 Loop Register

0x1060 DMA_RECTO RWH Channel 0 Rectangle Register

0x1100 DMA_CHO_CTRL RW Channel Control Register
DMA_CHx_CTRL RW Channel Control Register

0x112C DMA_CH11_CTRL RW Channel Control Register

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

9.7 Register Description

...the world's most energy friendly wireless MCUs

9.7.1 DMA_STATUS - DMA Status Registers

Offset Bit Position
o000 g 8| |8 |k (g[8 |g|ga|5|ela|3 |8y]o o oo | | |~]]0
o
Reset =) = o
3 o
Access @ @ o
= w
Name 2 [z
: < b
[®))
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
20:16 CHNUM 0x0B R Channel Number
Number of available DMA channels minus one.
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
74 STATE 0x0 R Control Current State
State can be one of the following. Higher values (11-15) are undefined.
Value Mode Description
0 IDLE Idle
1 RDCHCTRLDATA Reading channel controller data
2 RDSRCENDPTR Reading source data end pointer
3 RDDSTENDPTR Reading destination data end pointer
4 RDSRCDATA Reading source data
5 WRDSTDATA Writing destination data
6 WAITREQCLR Waiting for DMA request to clear
7 WRCHCTRLDATA Writing channel controller data
8 STALLED Stalled
9 DONE Done
10 PERSCATTRANS Peripheral scatter-gather transition
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 EN 0 R DMA Enable Status

When this bit is 1, the DMA is enabled.

9.7.2 DMA_CONFIG - DMA Configuration Register

Offset Bit Position

0x004 b IR IR IR BN S IS B B ST N B B 1 i [T R s Jic] B R = Wi |o |0

Reset o o

Access = =
&

Name x &
I
O

Bit NE] Reset Access Description

31:6 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

5 CHPROT 0 W Channel Protection Control

Control whether accesses done by the DMA controller are privileged or not. When CHPROT = 1 then HPROT is HIGH and the access
is privileged. When CHPROT = 0 then HPROT is LOW and the access is non-privileged.

4:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 EN 0 w Enable DMA

Set this bit to enable the DMA controller.

9.7.3 DMA_CTRLBASE - Channel Control Data Base Pointer Register

Offset Bit Position
o008 | F |8 (% |8 |N[(ge|3|Q|N|[I[R|3a|5|e|a |3 |y |2 |o|o|~|ow|v|o|a|]o
o
o
o
o
Reset 8
o
o
x
o
Access 5
1]
]
Name o
-l
a4
|_
8)
Bit Name Reset Access Description
31:0 CTRLBASE 0x00000000 RW Channel Control Data Base Pointer

The base pointer for a location in system memory that holds the channel control data structure. This register must be written to point
to a location in system memory with the channel control data structure before the DMA can be used. Note that ctrl_base_ptr[8:0]
must be 0.

9.7.4 DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer
Register

Offset Bit Position
R R RN R R R S E B R A A E e R R N A R R R A S
o
3
o
Reset S
o
(=)
x
o
Access @
w
(]
<
Name o
2
'_
)
[t
—
<
Bit Name Reset Access Description
31:0 ALTCTRLBASE 0x00000100 R Channel Alternate Control Data Base Pointer

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset

Access

Description

The base address of the alternate data structure. This register will read as DMA_CTRLBASE + 0x100.

9.7.5 DMA_CHWAITSTATUS - Channel Wait on Request Status Register

Offset Bit Position
oo |F (8| |8 |5 |ge | |g | |I|Rga|s|e|a|s gy |||~ oo |||~
Reset A A A | A A A | A | A=A
Access r ||| || || |||
S151515151%/3(3(3(31313
SHRHEEHRHEEE
EIE|E|IEIEIEEIE|IE|E|E|E
T|Z|5(8|5|66(5|5|56(5|8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11WAITSTATUS 1 R Channel 11 Wait on Request Status
Status for wait on request for channel 11.
10 CH1O0WAITSTATUS 1 R Channel 10 Wait on Request Status
Status for wait on request for channel 10.
9 CHOWAITSTATUS 1 R Channel 9 Wait on Request Status
Status for wait on request for channel 9.
8 CHBWAITSTATUS 1 R Channel 8 Wait on Request Status
Status for wait on request for channel 8.
7 CH7WAITSTATUS 1 R Channel 7 Wait on Request Status
Status for wait on request for channel 7.
6 CHBWAITSTATUS 1 R Channel 6 Wait on Request Status
Status for wait on request for channel 6.
5 CH5WAITSTATUS 1 R Channel 5 Wait on Request Status
Status for wait on request for channel 5.
4 CH4WAITSTATUS 1 R Channel 4 Wait on Request Status
Status for wait on request for channel 4.
3 CH3WAITSTATUS 1 R Channel 3 Wait on Request Status
Status for wait on request for channel 3.
2 CH2WAITSTATUS 1 R Channel 2 Wait on Request Status
Status for wait on request for channel 2.
1 CH1IWAITSTATUS 1 R Channel 1 Wait on Request Status
Status for wait on request for channel 1.
0 CHOWAITSTATUS 1 R Channel 0 Wait on Request Status

Status for wait on request for channel 0.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.6 DMA_CHSWREQ - Channel Software Request Register

Offset

Bit Position

N N S R R NS R R R I R R R R A S A R A R
Reset o|lo|o|o|o|ojlo|o|o|o |o|o
Access SHEHHEEHEHEHEEE
g g|IeIeReel|gel
Sl |ee|f|2|FIT|8
T|2(8|5(8|85(5|5(5(5]3
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11SWREQ 0 w1 Channel 11 Software Request
Write 1 to this bit to generate a DMA request for this channel.
10 CH10SWREQ 0 w1 Channel 10 Software Request
Write 1 to this bit to generate a DMA request for this channel.
9 CHI9SWREQ 0 w1 Channel 9 Software Request
Write 1 to this bit to generate a DMA request for this channel.
8 CH8SWREQ 0 w1 Channel 8 Software Request
Write 1 to this bit to generate a DMA request for this channel.
7 CH7SWREQ 0 w1 Channel 7 Software Request
Write 1 to this bit to generate a DMA request for this channel.
6 CH6SWREQ 0 w1 Channel 6 Software Request
Write 1 to this bit to generate a DMA request for this channel.
5 CH5SWREQ 0 w1 Channel 5 Software Request
Write 1 to this bit to generate a DMA request for this channel.
4 CH4SWREQ 0 w1 Channel 4 Software Request
Write 1 to this bit to generate a DMA request for this channel.
3 CH3SWREQ 0 W1 Channel 3 Software Request
Write 1 to this bit to generate a DMA request for this channel.
2 CH2SWREQ 0 w1 Channel 2 Software Request
Write 1 to this bit to generate a DMA request for this channel.
1 CH1SWREQ 0 w1 Channel 1 Software Request
Write 1 to this bit to generate a DMA request for this channel.
0 CHOSWREQ 0 w1 Channel 0 Software Request

Write 1 to this bit to generate a DMA request for this channel.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.7 DMA_CHUSEBURSTS - Channel Useburst Set Register

oo |&[g|ala|s|gela]a]a]a]c]gals]a|a|s|gs]a]a]o]|e|~ o]0 |o]|a]|]0
Reset o|lo|o|o|o|olo|o|o|o|o |o
Tz |z|z |z |z |||z |zT |
Access sz /222|522 2|22 2
¥ || ||| ||| ||
N0 ln|lolvoloo|lvo|ln|ln|ln|n
ElElE|E|E|IEE|IE|IE|IE|RE|E
N1 lnlnlunlnn| v |ln|ln|ln|ln
¥ | ¥ | ||| || |2 ||
Name 2123|3232 |3222122
]] m om m || m m om m m m
w Wy W w|ww|w W |w|Ww|Ww
Nl lo|lo|loloo|lalalaln|n
S22 |2|22|121212122
jgmmr\wmvmm‘—io
T T I I I || I I I I I I
5|5|0|0|0|gjo|jo|o|o |0 |0
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11USEBURSTS 0 RW1H Channel 11 Useburst Set
See description for channel 0.
10 CH10USEBURSTS 0 RW1H Channel 10 Useburst Set
See description for channel 0.
9 CHOUSEBURSTS 0 RW1H Channel 9 Useburst Set
See description for channel 0.
8 CHBUSEBURSTS 0 RW1H Channel 8 Useburst Set
See description for channel 0.
7 CH7USEBURSTS 0 RW1H Channel 7 Useburst Set
See description for channel 0.
6 CHBUSEBURSTS 0 RW1H Channel 6 Useburst Set
See description for channel 0.
5 CH5USEBURSTS 0 RW1H Channel 5 Useburst Set
See description for channel 0.
4 CH4USEBURSTS 0 RW1H Channel 4 Useburst Set
See description for channel 0.
3 CH3USEBURSTS 0 RW1H Channel 3 Useburst Set
See description for channel 0.
2 CH2USEBURSTS 0 RW1H Channel 2 Useburst Set
See description for channel 0.
1 CH1USEBURSTS 0 RW1H Channel 1 Useburst Set
See description for channel 0.
0 CHOUSEBURSTS 0 RW1H Channel 0 Useburst Set

Write to 1 to enable the useburst setting for this channel. Reading returns the useburst status. After the penultimate 2”R transfer
completes, if the number of remaining transfers, N, is less than 2”R then the controller resets the chnl_useburst_set bit to 0.
This enables you to complete the remaining transfers using dma_req[] or dma_sreq[]. In peripheral scatter-gather mode, if the
next_useburst bit is set in channel_cfg then the controller sets the chnl_useburst_set[C] bit to a 1, when it completes the DMA cycle

that uses the alternate data structure.

Value Mode Description
0 SINGLEANDBURST Channel responds to both single and burst requests
1 BURSTONLY Channel responds to burst requests only

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.8 DMA_CHUSEBURSTC - Channel Useburst Clear Register

Offset Bit Position
o0ic |5 |8 || |K (88|38 |1 |g|aa|n|ela||ag|2|S]o|o|~]|ojv || a]q]o
Reset o o |o| o o o o o o
Name 2223332 33|3|3|3
Qo [B|0| (566|566 6
212(2(8 /=823 |8]=|2]2
51515151555 |5|5|5|5|38
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11USEBURSTC 0 w1 Channel 11 Useburst Clear
Write to 1 to disable useburst setting for this channel.
10 CH10USEBURSTC 0 w1 Channel 10 Useburst Clear
Write to 1 to disable useburst setting for this channel.
9 CHOUSEBURSTC 0 w1 Channel 9 Useburst Clear
Write to 1 to disable useburst setting for this channel.
8 CHO8USEBURSTC 0 w1 Channel 8 Useburst Clear
Write to 1 to disable useburst setting for this channel.
7 CH7USEBURSTC 0 w1 Channel 7 Useburst Clear
Write to 1 to disable useburst setting for this channel.
6 CHB6USEBURSTC 0 w1 Channel 6 Useburst Clear
Write to 1 to disable useburst setting for this channel.
5 CH5USEBURSTC 0 w1 Channel 5 Useburst Clear
Write to 1 to disable useburst setting for this channel.
4 CH4USEBURSTC 0 w1 Channel 4 Useburst Clear
Write to 1 to disable useburst setting for this channel.
3 CH3USEBURSTC 0 wi Channel 3 Useburst Clear
Write to 1 to disable useburst setting for this channel.
2 CH2USEBURSTC 0 wi Channel 2 Useburst Clear
Write to 1 to disable useburst setting for this channel.
1 CH1USEBURSTC 0 w1 Channel 1 Useburst Clear
Write to 1 to disable useburst setting for this channel.
0 CHOUSEBURSTC 0 w1 Channel 0 Useburst Clear

Write to 1 to disable useburst setting for this channel.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.9 DMA_CHREQMASKS - Channel Request Mask Set Register

oo |g[g|ala|s|gula]a]a]a]=]gals]aa|s|gs]a]a]o]|e|~ o]0 |o]|a]|]0
Reset o|lo|o|o|o|ojlo|o|o|o |o|o
- — — f - | - - - — — —
Access =222 1212212121212|2
¥ || ||| ||| |B |
Qoo lu|lglu|lv|lglu|lvn |y
X ¥ |V | ¥ ¥ |X¥ ¥ |X|X|[X¥|¥|X
Qo |ln|lv|glu|lv|lu|lv|v |y
O T O I I o I o o o - o - o B o R
Name Z|lz|=|=|=2|=2=|=|=|=|=2|=
o|lo|o|o|o|ojo|lo|o|o|o|o
w L L L wwjw w w] L]
||| |¢e |o@|e|e ||
SIS |2 |25 g2 (32|55 2
Sl1&lo|o|o|ojo|o|o|o|o|O
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11REQMASKS 0 Rw1 Channel 11 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
10 CH10REQMASKS 0 Rw1 Channel 10 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
9 CH9REQMASKS 0 Rw1 Channel 9 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
8 CHBREQMASKS 0 RwW1 Channel 8 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
7 CH7REQMASKS 0 RW1 Channel 7 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
6 CH6REQMASKS 0 RwW1 Channel 6 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
5 CH5REQMASKS 0 RwW1 Channel 5 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
4 CH4REQMASKS 0 RwW1 Channel 4 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
3 CH3REQMASKS 0 RwW1 Channel 3 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
2 CH2REQMASKS 0 RwW1 Channel 2 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
1 CH1REQMASKS 0 RwW1 Channel 1 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
0 CHOREQMASKS 0 Rw1 Channel 0 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.10 DMA_CHREQMASKC - Channel Request Mask Clear Register

ooz |5 [g|ala|n|gula]a]a]a]c]|gals]aa|s|gs]a]a]o]|e|~|o|w|c|o]|a]|]0
Reset o|lo|o|o|o|ojlo|o|o|o |o|o
Access SHEIEIEHEHEHEHEEIE
glelelelelelelelelelele
¥ ¥ |X|¥X¥|X¥|X¥X|X¥|x¥|X
Qo |ln|lv|gu|lv|lu|lv|v |y
O T O I o I o I o o o - o - o - o R
Name Z |z |=|=|=2|=2=|=|=|=|=2|=
o|lo|o|o|o|ojo|lo|o|lo|o|O
w w] L www w w] L]
||| |¢e |o@|e|e ||
:gmool\@mvmmx—io
T T I I I || I I I I I I
5|5|0|0|0|gjo|jo|o|o |0 |0
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11REQMASKC 0 w1 Channel 11 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
10 CH10REQMASKC 0 w1 Channel 10 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
9 CH9REQMASKC 0 w1 Channel 9 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
8 CHBREQMASKC 0 w1 Channel 8 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
7 CH7REQMASKC 0 w1 Channel 7 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
6 CH6REQMASKC 0 w1 Channel 6 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
5 CH5REQMASKC 0 w1 Channel 5 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
4 CH4REQMASKC 0 w1 Channel 4 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
3 CH3REQMASKC 0 w1 Channel 3 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
2 CH2REQMASKC 0 w1 Channel 2 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
1 CH1REQMASKC 0 w1 Channel 1 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
0 CHOREQMASKC 0 w1 Channel 0 Request Mask Clear

Write to 1 to enable peripheral requests for this channel.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.11 DMA_CHENS - Channel Enable Set Register

ooz |5 [g|ala|s|gela]a]a]a]=]gals]aa|s]|gs]a]a]o]|e|~|o|w|c|o]|a]|]0
Reset o|lo|o|o|o|olo|o|o|o |o|o
Access gggggggggggg
|||k |||l | ||| |&
B0l lnlu|la|lvalvlv|lalaly
T|Z|5|5|5|55(5|5|5(5|5
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11ENS 0 RwW1 Channel 11 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
10 CH10ENS 0 RwW1 Channel 10 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
9 CHOENS 0 RW1 Channel 9 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
8 CHBENS 0 Rw1 Channel 8 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
7 CH7ENS 0 RW1 Channel 7 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
6 CHBENS 0 Rw1 Channel 6 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
5 CH5ENS 0 Rw1 Channel 5 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
4 CH4ENS 0 Rw1 Channel 4 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
3 CH3ENS 0 Rw1 Channel 3 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
2 CH2ENS 0 RwW1 Channel 2 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
1 CH1ENS 0 RwW1 Channel 1 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
0 CHOENS 0 RwW1 Channel 0 Enable Set

Write to 1 to enable this channel.

Reading returns the enable status of the channel.

9.7.12

DMA_CHENC - Channel Enable Clear Register

ooc |5 [g|ala|s|gala]a]a]a]c]gals]aa|z]|gs]a]a]o]|e|~|o|w]|c|o]|a]|]0
Reset o | o o
— [[- o [A | A - | -
Access S S EERE 2|2
OlQlo|o|o|vo|jo|lo|lo|lo|o
N Z|z2zlz|lz|lz|zlz|z|z|z|2|2
ame Wiw y|w|w|ww|w|w|w|w,|uW
:gc»oolxomvmr\l\—co
TIZIZT|IZ || |S|E|E | |X
OOOUOOUUOOOO

2015-01-13 - EZR32LG Family -

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

11 CH11ENC 0 w1 Channel 11 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

10 CH10ENC 0 w1 Channel 10 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

9 CH9ENC 0 w1 Channel 9 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

8 CHBENC 0 w1 Channel 8 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

7 CH7ENC 0 w1 Channel 7 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

6 CH6ENC 0 w1 Channel 6 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

5 CH5ENC 0 w1 Channel 5 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

4 CH4ENC 0 w1 Channel 4 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

3 CH3ENC 0 w1 Channel 3 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

2 CH2ENC 0 w1 Channel 2 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

1 CHI1ENC 0 w1 Channel 1 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.

0 CHOENC 0 w1 Channel 0 Enable Clear

Write to 1 to disable this channel. Note that the controller disables a channel, by setting the appropriate bit, when either it completes
the DMA cycle, or it reads a channel_cfg memory location which has cycle_ctrl = b000, or an ERROR occurs on the AHB-Lite bus.
A read from this field returns the value of CHOENS from the DMA_CHENS register.

9.7.13 DMA_CHALTS - Channel Alternate Set Register

Bit Position
o030 |7 |8 (%8 |8 (e3[R |ge|5|e|a 3|2y |=|S|o|o|~|ow | v]|o|a]|]0
Reset o|lo|o|lo|o|ojlo|o|o|o|o|o
— — — — | - — — — — —
Access 222|122 =2 =
a4 @ 2 o xr || o [a4 @ @ @
'@ I(Q) %] w |nln (%] ()]] []
Name i i S i R | il Rl i i
B I I = o s I = o O B o = ol I ¢
g =1 [=2) e ~ | 1 < 2] [aV) - o
T T I I I || X I I I I I
Sl1&|lo|o|o|ojo|o|o|o|0|O
Bit Name Reset Access Description
il Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11ALTS 0 RwW1 Channel 11 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
10 CH10ALTS 0 RwW1 Channel 10 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
9 CH9ALTS 0 RwW1 Channel 9 Alternate Structure Set

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
Write to 1 to select the alternate structure for this channel.

8 CHBALTS 0 RW1 Channel 8 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

7 CH7ALTS 0 RwW1 Channel 7 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

6 CHBALTS 0 RwW1 Channel 6 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

5 CH5ALTS 0 RwW1 Channel 5 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

4 CH4ALTS 0 Rw1 Channel 4 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

3 CH3ALTS 0 Rw1 Channel 3 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

2 CH2ALTS 0 Rw1 Channel 2 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

1 CH1ALTS 0 Rw1 Channel 1 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.

0 CHOALTS 0 Rw1 Channel 0 Alternate Structure Set

Write to 1 to select the alternate structure for this channel.

9.7.14 DMA_CHALTC - Channel Alter

nate Clear Register

Offset Bit Position
o034 |7 |8 (%8 |N(ge|3|| | [R|ga|5|ela 3|y |22]|o|o|~|ow | | |~]||0
Reset o |o
- - - - - o - - - - - -
Access |2zl (2|32|2|2(2|25
ggoooooooooo
Name Sla 5155185515955 1]8
Sisig|g|<|gg |22 |g|2|g
g =1 o [eo) ~ | 1 < 2] o - o
I I I || I I I I I I
Sl1&|lo|o|o|ojo|o|o|o |0 |0
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11ALTC 0 w1 Channel 11 Alternate Clear
Write to 1 to select the primary structure for this channel.
10 CH10ALTC 0 w1 Channel 10 Alternate Clear
Write to 1 to select the primary structure for this channel.
9 CH9ALTC 0 w1 Channel 9 Alternate Clear
Write to 1 to select the primary structure for this channel.
8 CHBALTC 0 w1 Channel 8 Alternate Clear
Write to 1 to select the primary structure for this channel.
7 CH7ALTC 0 w1 Channel 7 Alternate Clear
Write to 1 to select the primary structure for this channel.
6 CHBALTC 0 w1 Channel 6 Alternate Clear

Write to 1 to select the primary structure for this channel.

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

5 CH5ALTC 0 w1 Channel 5 Alternate Clear
Write to 1 to select the primary structure for this channel.

4 CH4ALTC 0 w1 Channel 4 Alternate Clear
Write to 1 to select the primary structure for this channel.

3 CH3ALTC 0 w1 Channel 3 Alternate Clear
Write to 1 to select the primary structure for this channel.

2 CH2ALTC 0 w1 Channel 2 Alternate Clear
Write to 1 to select the primary structure for this channel.

1 CHIALTC 0 w1 Channel 1 Alternate Clear
Write to 1 to select the primary structure for this channel.

0 CHOALTC 0 w1 Channel 0 Alternate Clear

Write to 1 to select the primary structure for this channel.

9.7.15 DMA_CHPRIS - Channel Priority Set Register

Offset Bit Position
0x038 S|3 || |J|QQ (I |IQ [V |J|RIgE 5 |S |8 |3 |QY¥ | |S|o|o|~|ow | |0 a|d|0
Reset o|lo|o|lo|o|ojlo|o|o|o|o|o
Access |12 /2/2/2/52|2|2|2|2 |2
|||k | ||| | ||| &
L P I N B T T I I B R R) B)
Name E|E|5 5585|5588 |8
g =1 (=) © ~ |© ©v < ™ N - o
T|2(5|5(8(85(5|5(5|5|8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11PRIS 0 RwW1 Channel 11 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
10 CH10PRIS 0 RwW1 Channel 10 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
9 CH9PRIS 0 RW1 Channel 9 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
8 CH8PRIS 0 RW1 Channel 8 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
7 CH7PRIS 0 RwW1 Channel 7 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
6 CH6PRIS 0 RwW1 Channel 6 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
5 CH5PRIS 0 RW1 Channel 5 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
4 CH4PRIS 0 RW1 Channel 4 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
3 CH3PRIS 0 RwW1 Channel 3 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
2 CH2PRIS 0 Rw1 Channel 2 High Priority Set

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
1 CHI1PRIS 0 RW1 Channel 1 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
0 CHOPRIS 0 RW1 Channel 0 High Priority Set

Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.

9.7.16 DMA_CHPRIC - Channel Priority Clear Register

Offset Bit Position
0x03C S|8N Q|J|RYQ|I|IQJ(V|J|RIgE|5|g |8 |3 QY| |S|o|o|~|ow | |0 a|d|0
Reset o|lo|o|olo|o|o|o|o|o
SEHEHEEBEEEHEEEE
Ol lo oo |Qe oo oo 0
Name || ||| ||| ||
Sl1&lo|o|o|ojo|o|o|o |0 |0
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11PRIC 0 w1 Channel 11 High Priority Clear
Write to 1 to clear high priority for this channel.
10 CH10PRIC 0 w1 Channel 10 High Priority Clear
Write to 1 to clear high priority for this channel.
9 CH9PRIC 0 w1 Channel 9 High Priority Clear
Write to 1 to clear high priority for this channel.
8 CHS8PRIC 0 w1 Channel 8 High Priority Clear
Write to 1 to clear high priority for this channel.
7 CH7PRIC 0 W1 Channel 7 High Priority Clear
Write to 1 to clear high priority for this channel.
6 CH6PRIC 0 w1 Channel 6 High Priority Clear
Write to 1 to clear high priority for this channel.
5 CH5PRIC 0 w1 Channel 5 High Priority Clear
Write to 1 to clear high priority for this channel.
4 CH4PRIC 0 w1 Channel 4 High Priority Clear
Write to 1 to clear high priority for this channel.
3 CH3PRIC 0 w1 Channel 3 High Priority Clear
Write to 1 to clear high priority for this channel.
2 CH2PRIC 0 w1 Channel 2 High Priority Clear
Write to 1 to clear high priority for this channel.
1 CH1PRIC 0 w1 Channel 1 High Priority Clear
Write to 1 to clear high priority for this channel.
0 CHOPRIC 0 w1 Channel 0 High Priority Clear

Write to 1 to clear high priority for this channel.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.17

DMA_ERRORC - Bus Error Clear Register

oo |ssals|s]da]s]a]s]s|g|ea]5]a]a|a|2a|a|alo]e]~[do]x]o]v]~]o
Reset
Access
4
Name e}
x
o
w
311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 ERRORC 0 RW Bus Error Clear

This bit is set high if an AHB bus error has occurred. Writing a 1 to this bit will clear the bit. If the error is deasserted at the same time
as an error occurs on the bus, the error condition takes precedence and ERRORC remains asserted.

9.7.18

DMA_CHREQSTATUS - Channel Request Status

oew |5 [g|ala|s|gela]a]a]a]=]gals]aa|z]|gs]a]a]o]|e|~|o|w|c]|o]|a]|]0
Reset o|lo|o|lo|o|ojlo|o|o|o|o|o
Access r o e || |oe | @ | |||
Nl |ln|lolvo|logv|lo|lalv|v|n
2 2 -] =] D D D o} =} -] -] =}
E|lE|E|E|E|EIE|IE|E|E|E|E
e S I I O I O B O B O B
Name ElElE|E|E|IEE|E|IE|E|IE|E
&161818(13/8818(8(8/3|8
L L L L w |wjw w w]]]
x|l ||| ||z ||
3 = (2} oo} ~ O < [s2) N - o
T T I I I || I I I I I I
5|15|0|0|0|gjo|jo|o|o |0 |0
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11REQSTATUS 0 R Channel 11 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
10 CH10REQSTATUS 0 R Channel 10 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
9 CH9REQSTATUS 0 R Channel 9 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
8 CHBREQSTATUS 0 R Channel 8 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2% DMA transfers.
7 CH7REQSTATUS 0 R Channel 7 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
6 CH6REQSTATUS 0 R Channel 6 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

1-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

CH5REQSTATUS 0 R Channel 5 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH4REQSTATUS 0 R Channel 4 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH3REQSTATUS 0 R Channel 3 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2% DMA transfers.

CH2REQSTATUS 0 R Channel 2 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH1REQSTATUS 0 R Channel 1 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CHOREQSTATUS 0 R Channel 0 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

9.7.19

DMA_CHSREQSTATUS - Channel Single Request Status

oee |5 [g|ala|s|gula]a]a]a]=]gals]aa|z]|gs]a]a]o]|e|~ o]0 |o]|a]|]0
Reset o|lo|o|o|o|olo|o|o|o |o|o
Access r|locie| x| |oe |@ ||| |
] 2] [0 2] 0 |0 uv 2] [} [%)] [0 [}
2022|2222 |2|2|2|22
ElElIE|E|E|IEIE|E|E|EIE|E
P B i I O e B o IO B I e
Name 2l2|b|lalalab|la|lala|b]|b
ololo|o|lo|oo|lo|o|o|o|C
L L L L w |w|w w w] L L
||y || |¢e ||| ||x
Q0120 |a|lv|aald|alalala
o © ~ | v < (a2} N — o
|l |T ||| ||| ||
Sl1&|lo|o|o|ojo|o|o|o |0 |0
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11SREQSTATUS 0 R Channel 11 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
10 CH10SREQSTATUS 0 R Channel 10 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
9 CHI9SREQSTATUS 0 R Channel 9 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
8 CH8SREQSTATUS 0 R Channel 8 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
7 CH7SREQSTATUS 0 R Channel 7 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
6 CH6SREQSTATUS 0 R Channel 6 Single Request Status

1-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CH5SREQSTATUS 0 R Channel 5 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CH4SREQSTATUS 0 R Channel 4 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CH3SREQSTATUS 0 R Channel 3 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CH2SREQSTATUS 0 R Channel 2 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CH1SREQSTATUS 0 R Channel 1 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

CHOSREQSTATUS 0 R Channel 0 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

9.7.20

DMA_IF - Interrupt Flag Register

oaone |5 [g|a|z|s|gela]a]a]a]=]gals]aa|z]|gs]a]a]o]|e|~|o|w]|]|o]|a]|]0
Reset | o o|lo|o|lo|o|ojo|o|o|o|o|o
Access | x r|le ||l | |ee || |||
wiw | w | www | w|w|w w|w
w : S o © ~ | ©| v < () N - o
TIZ|5|8|5|55(5|5|5(5|5

31 ERR 0 R DMA Error Interrupt Flag

This flag is set when an error has occurred on the AHB bus.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11DONE 0 R DMA Channel 11 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
10 CH10DONE 0 R DMA Channel 10 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
9 CH9DONE 0 R DMA Channel 9 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
8 CH8DONE 0 R DMA Channel 8 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
7 CH7DONE 0 R DMA Channel 7 Complete Interrupt Flag

Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
6 CH6DONE 0 R DMA Channel 6 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
5 CH5DONE 0 R DMA Channel 5 Complete Interrupt Flag

1-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.

4 CH4DONE 0 R DMA Channel 4 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
3 CH3DONE 0 R DMA Channel 3 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
2 CH2DONE 0 R DMA Channel 2 Complete Interrupt Flag

Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
1 CH1DONE 0 R DMA Channel 1 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
0 CHODONE 0 R DMA Channel 0 Complete Interrupt Flag

Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.

9.7.21

DMA_IFS - Interrupt Flag Set Register

oawons |5 [g|alz|s|gela]a]a]a]c]gals]a]a|z]|gs]a]a]o]|e|~|o|w]|]|o]|a]|]0
Reset | o o|lo|o|o|o|olo|o|o|o|o|o
Access | 3 SEHEIEEI EEIEHEIEEE
w w L L wo|ww w w 1] L 1]
Name | & AHHHAERHEHEE
i 2le|5|8/elgals|s|8]a]8
TIZ|5|5|5|55(5|5|5(5]5
31 ERR 0 wi DMA Error Interrupt Flag Set
Set to 1 to set DMA error interrupt flag.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11DONE 0 w1 DMA Channel 11 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
10 CH10DONE 0 w1 DMA Channel 10 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
9 CHI9DONE 0 w1 DMA Channel 9 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
8 CH8DONE 0 w1 DMA Channel 8 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
7 CH7DONE 0 w1 DMA Channel 7 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
6 CH6DONE 0 w1 DMA Channel 6 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
5 CH5DONE 0 wi DMA Channel 5 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 w1 DMA Channel 4 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 w1 DMA Channel 3 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
2 CH2DONE 0 w1 DMA Channel 2 Complete Interrupt Flag Set

www.Silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

Write to 1 to set the corresponding DMA channel complete interrupt flag.

1 CH1DONE 0 w1 DMA Channel 1 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

0 CHODONE 0 wi DMA Channel 0 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

9.7.22 DMA_IFC - Interrupt Flag Clear Register

oaooe | & [g|a|a|n|ge|a]a]a]a]c]|gals]aa|s]|gs]a]a]o]|e|~|o|w]|c|o]|a]|]0
Reset o o o o o o |o| o o
Access | 2 SHEHHEEHEHEHEEE
wiw) wwww | ww W w|w
T|Z|5(8|5(66(5|5|56(5|8
31 ERR 0 w1 DMA Error Interrupt Flag Clear
Set to 1 to clear DMA error interrupt flag. Note that if an error happened, the Bus Error Clear Register must be used to clear the DMA.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11DONE 0 w1 DMA Channel 11 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
10 CH10DONE 0 w1 DMA Channel 10 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
9 CH9DONE 0 w1 DMA Channel 9 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
8 CH8DONE 0 w1 DMA Channel 8 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
7 CH7DONE 0 w1 DMA Channel 7 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
6 CH6DONE 0 w1 DMA Channel 6 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
5 CH5DONE 0 w1 DMA Channel 5 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 w1 DMA Channel 4 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 w1 DMA Channel 3 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
2 CH2DONE 0 w1 DMA Channel 2 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
1 CH1DONE 0 w1 DMA Channel 1 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
0 CHODONE 0 wi DMA Channel 0 Complete Interrupt Flag Clear

Write to 1 to clear the corresponding DMA channel complete interrupt flag.

2015-01-13 - EZR32LG Family - | . www.silabs.com

EZR

.the world's most energy friendly wireless MCUs

9.7.23 DMA_IEN - Interrupt Enable register
oaooc |5 [g|a|z|s|ge|a|a]a]a]c]gals]aa|z]|gs]a]a]o]|e|~|o|o]|c|o]|a]|]0
Reset
wiw | w | www | w|w|w w|w
w — o o [<9) N~ | v < 2] N - o
T|Z|5|8|5|55(5|5|5(5|5
31 ERR 0 RW DMA Error Interrupt Flag Enable
Set this bit to enable interrupt on AHB bus error.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11DONE 0 RW DMA Channel 11 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
10 CH10DONE 0 RW DMA Channel 10 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
9 CH9DONE 0 RW DMA Channel 9 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
8 CH8DONE 0 RW DMA Channel 8 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
7 CH7DONE 0 RW DMA Channel 7 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
6 CH6DONE 0 RW DMA Channel 6 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
5 CH5DONE 0 RW DMA Channel 5 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
4 CH4DONE 0 RW DMA Channel 4 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
3 CH3DONE 0 RW DMA Channel 3 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
2 CH2DONE 0 RW DMA Channel 2 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
1 CH1DONE 0 RW DMA Channel 1 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
0 CHODONE 0 RW DMA Channel 0 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel.

Clear to disable the interrupt.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

9.7.24 DMA_CTRL - DMA Control Register

Bit Position

x1000 | (8[R8 |x |8 ||| |ga|5|g |2 |z (ay|2|S|o|=|r|ojw||mo|a]|a]o

Reset

Access 22
3

Name é ﬁ

o |3

1]
o

Bit INETS Reset Access Description

S Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 PRDU 0 RW Prevent Rect Descriptor Update

Allows the reuse of a rect descriptor. When active CHO and no others can have RDS set
0 DESCRECT 0 RW Descriptor Specifies Rectangle

Word 4 (user data) in dma descriptor specifies WIDTH, HEIGHT and SRCSTRIDE for rectangle copies. WIDTH is given by bits 9:0,
HEIGHT is given by bits 19:10, and SRCSTRIDE is given by bits 30:20

9.7.25 DMA_RDS - DMA Retain Descriptor State

Bit Position
014 | F (8 (R|”|N|gQ(T (||| |5|g|g|s (e ||o|w|~|ojw|s o][]0
Reset
Access EEEEEEE%E?E
ggmwwomvmr\l\—co
I I I || I I I I I I
Name S1dle|lolglglg|o|o|lg|Q|Q
) a] 2] 0 [l (%] (%] 0 | v (]
2128 1a|la|la|glaja|ja|a|ala
IRl |||l ||| ||
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 RDSCH11 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous
10 RDSCH10 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous
9 RDSCH9 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous
8 RDSCHS8 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous
7 RDSCH7 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous
6 RDSCH6 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

5 RDSCH5 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

4 RDSCH4 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

3 RDSCH3 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

2 RDSCH2 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

1 RDSCH1 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

0 RDSCHO 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every arbitration
cycle if the next channel is the same as the previous

9.7.26 DMA_LOOPO - Channel 0 Loop Register

Offset Bit Position
0x1020 5|8V IQQ|IJI|Q(V|J |3 |58 (2|3 Qs (d|8|o|o|~|ow|s|m|ln|d]|o
o
Reset o S
x
o
I
Access E 5
= =
Name g 5
2
Bit NET) Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 EN 0 RW DMA Channel 0 Loop Enable
Loop enable for channel 0
15:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9:0 WIDTH 0x000 RWH Loop Width

Reload value for N_MINUS_1 when loop is enabled

1-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.27 DMA_LOOP1 - Channel 1 Loop Register

Offset

Bit Position

0x1024 b =T R R N It -G B B ST BN B S 1= T i T s i e e R IR Wi |o || o
o
Reset o 8
x
o
Access E E
P =
Name g 5
2
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 EN 0 RW DMA Channel 1 Loop Enable
Loop enable for channel 1
15:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9:0 WIDTH 0x000 RW DMA Channel 1 Loop Width

Reload value for N_MINUS_1 when loop is enabled

9.7.28 DMA_RECTO - Channel 0 Rectangle Register

Offset Bit Position
x1060 |58 8| |X|IN|QQ|JI|Q V(I |3 |52 |Q|3|qd8 |2 |S|@ w s |o N d o
o o o
Reset 8 8 8
x x x
o o o
Access = g é
x T (2
- - -
Name x s)
2 3 0
%] @ T
a)
Bit Name Reset Access Description
31:21 DSTSTRIDE 0x000 RW DMA Channel 0 Destination Stride
Space between start of lines in destination rectangle
20:10 SRCSTRIDE 0x000 RWH DMA Channel 0 Source Stride
Space between start of lines in source rectangle
9:0 HEIGHT 0x000 RWH DMA Channel 0 Rectangle Height

Number of lines when doing rectangle copy. Set to the number of lines - 1.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

9.7.29 DMA_CHx_CTRL - Channel Control Register

oao |58 |8 |8 |5 |88 |s v s s|g|ge]x]e]a]a[alaa]a]o]e]~]da]|]x]o
Reset g g
Access E 5
Name 4 ?
:
3
31:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21:16 SOURCESEL 0x00 RW Source Select
Select input source to DMA channel.
Value Mode Description
0b000000 NONE No source selected
0b001000 ADCO Analog to Digital Converter 0
0b001010 DACO Digital to Analog Converter O
0b001100 USARTRFO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b001101 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b001110 USART2 Universal Synchronous/Asynchronous Receiver/Transmitter 2
0b010000 LEUARTO Low Energy UART O
0b010001 LEUART1 Low Energy UART 1
0b010100 12C0 12C0
0b010101 12C1 12C 1
0b011000 TIMERO Timer 0
0b011001 TIMER1 Timer 1
0b011010 TIMER2 Timer 2
0b011011 TIMER3 Timer 3
0b101100 UARTO Universal Asynchronous Receiver/Transmitter O
0b101101 UART1 Universal Asynchronous Receiver/Transmitter 1
0b110000 MSC
0b110001 AES Advanced Encryption Standard Accelerator
0b110010 LESENSE Low Energy Sensor Interface
15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0 SIGSEL 0x0 RW Signal Select
Select input signal to DMA channel.
Value Mode Description
SOURCESEL = 0b000000 (NONE)
Obxxxx OFF Channel input selection is turned off
SOURCESEL = 0b001000 (ADCO)
0b0000 ADCOSINGLE ADCOSINGLE
0b0001 ADCOSCAN ADCOSCAN
SOURCESEL = 00001010 (DACO)
0b0000 DACOCHO DACOCHO
0b0001 DACOCH1 DACOCH1
SOURCESEL = 0b001100
(USARTRFO)
0b0000 USARTRFORXDATAV USARTRFORXDATAV REQ/SREQ
0b0001 USARTRFOTXBL USARTRFOTXBL REQ/SREQ
0b0010 USARTRFOTXEMPTY USARTRFOTXEMPTY
SOURCESEL = 0b001101
(USART1)

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

Value Mode Description

0b0000 USART1IRXDATAV USART1RXDATAV REQ/SREQ
0b0001 USART1TXBL USART1TXBL REQ/SREQ
0b0010 USART1TXEMPTY USART1TXEMPTY

0b0011 USART1RXDATAVRIGHT USART1RXDATAVRIGHT REQ/SREQ
0b0100 USARTITXBLRIGHT USART1TXBLRIGHT REQ/SREQ
SOURCESEL = 0b001110

(USART2)

0b0000 USART2RXDATAV USART2RXDATAV REQ/SREQ
0b0001 USART2TXBL USART2TXBL REQ/SREQ
0b0010 USART2TXEMPTY USART2TXEMPTY

0b0011 USART2RXDATAVRIGHT USART2RXDATAVRIGHT REQ/SREQ
0b0100 USART2TXBLRIGHT USART2TXBLRIGHT REQ/SREQ
SOURCESEL = 0b010000

(LEUARTO)

0b0000 LEUARTORXDATAV LEUARTORXDATAV

0b0001 LEUARTOTXBL LEUARTOTXBL

0b0010 LEUARTOTXEMPTY LEUARTOTXEMPTY
SOURCESEL = 0b010001

(LEUART1)

0b0000 LEUART1RXDATAV LEUART1RXDATAV

0b0001 LEUART1TXBL LEUART1TXBL

0b0010 LEUART1ITXEMPTY LEUART1ITXEMPTY
SOURCESEL = 0b010100 (12C0)

0b0000 I2CORXDATAV I2CORXDATAV

0b0001 12COTXBL 12COTXBL

SOURCESEL = 0b010101 (I12C1)

0b0000 12C1RXDATAV I12C1RXDATAV

0b0001 12C1TXBL 12C1TXBL

SOURCESEL = 0b011000

(TIMERO)

0b0000 TIMEROUFOF TIMEROUFOF

0b0001 TIMEROCCO TIMEROCCO

0b0010 TIMEROCC1 TIMEROCC1

0b0011 TIMEROCC2 TIMEROCC2

SOURCESEL = 0b011001

(TIMER1)

0b0000 TIMER1IUFOF TIMER1UFOF

0b0001 TIMER1CCO TIMER1CCO

0b0010 TIMER1ICC1 TIMER1CC1

0b0011 TIMER1CC2 TIMER1CC2

SOURCESEL = 0b011010

(TIMER2)

0b0000 TIMER2UFOF TIMER2UFOF

0b0001 TIMER2CCO TIMER2CCO

0b0010 TIMER2CC1 TIMER2CC1

0b0011 TIMER2CC2 TIMER2CC2

SOURCESEL = 0b011011

(TIMER3)

0b0000 TIMER3UFOF TIMER3UFOF

0b0001 TIMER3CCO TIMER3CCO

0b0010 TIMER3CC1 TIMER3CC1

0b0011 TIMER3CC2 TIMER3CC2

SOURCESEL = 0b101100 (UARTO)

0b0000 UARTORXDATAV UARTORXDATAV REQ/SREQ
0b0001 UARTOTXBL UARTOTXBL REQ/SREQ
0b0010 UARTOTXEMPTY UARTOTXEMPTY

SOURCESEL = 0b101101 (UART1)

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
Value Mode Description
0b0000 UART1RXDATAV UART1RXDATAV REQ/SREQ
0b0001 UART1TXBL UART1TXBL REQ/SREQ
0b0010 UART1TXEMPTY UARTITXEMPTY
SOURCESEL = 0h110000 (MSC)
0b0000 MSCWDATA MSCWDATA
SOURCESEL = 0b110001 (AES)
0b0000 AESDATAWR AESDATAWR
0b0001 AESXORDATAWR AESXORDATAWR
0b0010 AESDATARD AESDATARD
0b0011 AESKEYWR AESKEYWR
SOURCESEL = 0b110010
(LESENSE)
0b0000 LESENSEBUFDATAV LESENSEBUFDATAV REQ/SREQ

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

10 RMU - Reset Management Unit

What?
The RMU ensures correct reset operation.
It is responsible for connecting the different
reset sources to the reset lines of the
EZR32LG.
Why?
A correct reset sequence is needed to
lezl" ensure safe and synchronous startup of the
EZR32LG. In the case of error situations such
POUERON > as power supply glitches or software crash,
BROWNOUT the RMU provides proper reset and startup of
Reset Management Unit RESET the EZR32LG.
LQCKUP >
ﬁBFSELBIZ)_’—> HOW’)
S >

The Power-on Reset and Brown-out Detector
of the EZR32LG provides power line
monitoring with exceptionally low power
consumption. The cause of the reset may be
read from a register, thus providing software
with information about the cause of the reset.

WATICHDOG |

10.1 Introduction

The RMU is responsible for handling the reset functionality of the EZR32LG.

10.2 Features

* Reset sources
» Power-on Reset (POR)
» Brown-out Detection (BOD) on the following power domains:
* Regulated domain
» Unregulated domain
» Analog Power Domain 0 (AVDDO0)
» Analog Power Domain 1 (AVDD1)
 RESETN pin reset
» Watchdog reset
» EM4 wakeup reset from pin
» EM4 wakeup reset from Backup RTC interrupt
» Wakeup from Backup Mode
» Software triggered reset (SYSRESETREQ)
» Core LOCKUP condition
* EMA4 Detection
» A software readable register indicates the cause of the last reset

10.3 Functional Description

The RMU monitors each of the reset sources of the EZR32LG. If one or more reset sources go active,
the RMU applies reset to the EZR32LG. When the reset sources go inactive the EZR32LG starts up. At
startup the EZR32LG loads the stack pointer and program entry point from memory, and starts execution.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

As seen in Figure 10.1 (p. 140) the Power-on Reset, Brown-out Detectors, Watchdog timeout and
RESETnN pin all reset the whole system including the Debug Interface. A Core Lockup condition or a
System reset request from software resets the whole system except the Debug Interface.

Whenever a reset source is active, the corresponding bit in the RMU_RSTCAUSE register is set. At
startup the program code may investigate this register in order to determine the cause of the reset. The
register must be cleared by software.

Figure 10.1. RMU Reset Input Sources and Connections.

Reset Management Unit
POR
BOD

|E POWERONN
Voo BROWNOUT_UNREGN
Cortex

Vbp_RecuLATED BOD BROWNOUT_REGn
=1

AVDDO >~ | BROWNOUT_AVDDO
—]

Debug
Interface

AVDD1 @ BROWNOUT_AVDD1
RESETn —
X -

EM4 wakeup

Backup mode exit

ﬂﬂﬁ
_/

A

Core

WDOG

em4
Backup mod
RCCLR

RMU_RSTCAUSE

Yvy

A

LOCKUP Peripherals

LOCKUPRDIS

SYSREQRST

Edge- to- pulsi
filter

— \ SYSRESETn
4

10.3.1 RMU_RSTCAUSE Register

The RMU_RSTCAUSE register indicates the reason for the last reset. The register should be cleared
after the value has been read at startup. Otherwise the register may indicate multiple causes for the
reset at next startup.

The following procedure must be done to clear RMU_RSTCAUSE:

1. Write a 1 to RCCLR in RMU_CMD
2. Write a 1 to bit 0 in EMU_AUXCTRL
3. Write a 0 to bit 0 in EMU_AUXCTRL

RMU_RSTCAUSE should be interpreted according to Table 10.1 (p. 141). X bits are don't care. Notice
that it is possible to have multiple reset causes. For example, an external reset and a watchdog reset
may happen simultaneously.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Table 10.1. RMU Reset Cause Register Interpretation

OhXXXX XXXX XXXX XXX1 A Power-on Reset has been performed. X bits are don't care.
ObXXXX XXXX OXXX XX10 A Brown-out has been detected on the unregulated power.
ObhXXXX XXXX XXX0 0100 A Brown-out has been detected on the regulated power.
ObXXXX XXXX XXXX 1X00 An external reset has been applied.
ObXXXX XXXX XXX1 XX00 A watchdog reset has occurred.
0bXXXX X000 0010 0000 A lockup reset has occurred.
0bXXXX X000 01X0 0000 A system request reset has occurred.
0bXXXX X000 1XX0 0XX0 The system has woken up from EM4.
0bXXXX X001 1XX0 0XX0 The system has woken up from EM4 on an EM4 wakeup reset request from pin.
ObXXXX X01X XXX0 0000 A Brown-out has been detected on Analog Power Domain 0 (AVDDO).
ObXXXX X10X XXX0 0000 A Brown-out has been detected on Analog Power Domain 1 (AVDD1).
ObXXXX LXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on VDD_DREG.
ObXXX1L XXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on BU_VIN.
ObXXIX XXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on unregulated power
ObXIXX XXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on regulated power.
ObIXXX XXXX XXXX XXX0 The system has been in Backup mode.

Note

When exiting EM4 with external reset, both the BODREGRST and BODUNREGRST in
RSTCAUSE might be set (i.e. are invalid)

10.3.2 Power-On Reset (POR)

The POR ensures that the EZR32LG does not start up before the supply voltage Vpp has reached
the threshold voltage VPORthr (see Device Datasheet Electrical Characteristics for details). Before the
threshold voltage is reached, the EZR32LG is kept in reset state. The operation of the POR is illustrated
in Figure 10.2 (p. 141), with the active low POWERONN reset signal. The reason for the “unknown”
region is that the corresponding supply voltage is too low for any reliable operation.

Figure 10.2. RMU Power-on Reset Operation

VPORthr

POWERONN | unknown

time

10.3.3 Brown-Out Detector Reset (BOD)

The EZR32LG has 4 brownout detectors, one for the unregulated 3.0 V power, one for the regulated
internal power, one for Analog Power Domain 0 (AVDDO), and one for Analog Power Domain 1 (AVDD1).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

The BODs are constantly monitoring the voltages. Whenever the unregulated or regulated power drops
below the VBODthr value (see Electrical Characteristics for details), or if the AVDDO or AVDD1 drops
below the voltage at the decouple pin (DEC), the corresponding active low BROWNQOUTNR line is held
low. The BODs also include hysteresis, which prevents instability in the corresponding BROWNOUTN
line when the supply is crossing the VBODthr limit or the AVDD bods drops below decouple pin (DEC).
The operation of the BOD is illustrated in Figure 10.3 (p. 142) . The “unknown” regions are handled
by the POR module.

Figure 10.3. RMU Brown-out Detector Operation

V
VBODhyst
VBODthr g 5\$ g ™|] VBODhyst b
Vbp
BROWNOUTn Unknown Unknown

time

10.3.4 RESETn pin Reset

Forcing the RESETn pin low generates a reset of the EZR32LG. The RESETn pin includes an on-
chip pull-up resistor, and can therefore be left unconnected if no external reset source is needed. Also
connected to the RESETNn line is a filter which prevents glitches from resetting the EZR32LG.

10.3.5 Watchdog Reset

The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software
does not clear it, a Watchdog reset is activated. This functionality provides recovery from a software
stalemate. Refer to the Watchdog section for specifications and description.

10.3.6 Lockup Reset

A Cortex-M3 lockup is the result of the core being locked up because of an unrecoverable exception
following the activation of the processor’s built-in system state protection hardware.

For more information about the Cortex-M3 lockup conditions see the ARMv7-M Architecture Reference

Manual. The Lockup reset does not reset the Debug Interface. Set the LOCKUPRDIS bit in the
RMU_CTRL register in order to disable this reset source.

10.3.7 System Reset Request

Software may initiate a reset (e.g. if it finds itself in a non-recoverable state). By writing to the
SYSRESETREQ bitin the Application Interrupt and Reset Control Register (see the Cortex-M3 reference
manual), a reset is issued. The SYSRESETREQ does not reset the Debug Interface.

10.3.8 EM4 Reset

Whenever EM4 is entered, the EM4RST bit is set. This bit enables the user to identify that the device
has been in EM4. Upon wake-up this bit should be cleared by software.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

10.3.9 EM4 Wakeup Reset

Whenever the system is woken up from EM4 on a pin wake-up request, the EMAWURST bit is set. This
bit enables the user to identify that the device was woken up from EM4 using a pin wake-up request.
Upon wake-up this bit should be cleared by software.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

10.4 Register Map

The offset register address is relative to the registers base address.

Offset INEINE Type Description
0x000 RMU_CTRL RW Control Register
0x004 RMU_RSTCAUSE R Reset Cause Register
0x008 RMU_CMD w1 Command Register

10.5 Register Description

10.5.1 RMU_CTRL - Control Register

Offset Bit Position
0x000 S |I3IXIQIKICQII|Q|V[J|R[g& |5 |2 |2 |3 |g|Y |2 |S|o|o|~|ow |t |o|n|d]|o0
Reset —
Access E E
(%))
Z|o
Name 5lE
h'd =]
2|5
“1o
—
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 BURSTEN 1 RW Backup domain reset enable

This bit has to be cleared before accessing the registers in the BURTC.

0 LOCKUPRDIS 0 RW Lockup Reset Disable
Set this bit to disable the LOCKUP signal (from the Cortex) from resetting the device.

10.5.2 RMU_RSTCAUSE - Reset Cause Register

Offset Bit Position
R R RN R R S B R A R E B e R R N A R R R A S
Reset o o (O O o o o o o |o| o o o o o o
Access r | | | x| x| x| x| |¥e | @ | x| | x|
Q =
Glo|dlz |8 = = | = 5l
AHERHEIEERERAREE:
e JHEEEBHBEHHEEHEEEE
] Q| > E o
=/21g/2/5/8|8|3 |2 |5 5|8|a|5(5]¢
2@ o2 |a|e|a| &2 Q 8
2 o
o
Bit NET] Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15 BUMODERST 0 R Backup mode reset
Set if the system has been in Backup mode. Must be cleared by software. Please see Section 11.3.4 (p. 153) for details on how
to interpret this bit.
14 BUBODREG 0 R Backup Brown Out Detector Regulated Domain
Set if the Backup BOD sensing on regulated power triggers. Must be cleared by software. Please see Section 11.3.4.2 (p. 154)
for details on how to interpret this bit.
13 BUBODUNREG 0 R Backup Brown Out Detector Unregulated Domain

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

Set if the Backup BOD sensing on unregulated power triggers. Must be cleared by software. Please see Section 11.3.4.2 (p. 154)
for details on how to interpret this bit.

12 BUBODBUVIN 0 R Backup Brown Out Detector, BU_VIN

Set if the Backup BOD sensing on BU_VIN triggers. Must be cleared by software. Please see Section 11.3.4.2 (p. 154) for details
on how to interpret this bit.

11 BUBODVDDDREG 0 R Backup Brown Out Detector, VDD_DREG

Set if the Backup BOD sensing on VDDD_REG triggers. Must be cleared by software. Please see Section 11.3.4.2 (p. 154) for
details on how to interpret this bit.

10 BODAVDD1 0 R AVDD1 Bod Reset

Set if analog power domain 1 brown out detector reset has been performed. Must be cleared by software. Please see Table 10.1 (p.
141) for details on how to interpret this bit.

9 BODAVDDO 0 R AVDDO Bod Reset

Set if analog power domain 0 brown out detector reset has been performed. Must be cleared by software. Please see Table 10.1 (p.
141) for details on how to interpret this bit.

8 EMAWURST 0 R EM4 Wake-up Reset

Set if the system has been woken up from EM4 from a reset request from pin. Must be cleared by software. Please see Table 10.1 (p.
141) for details on how to interpret this bit.

7 EM4RST 0 R EM4 Reset

Set if the system has been in EM4. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how to interpret this bit.

6 SYSREQRST 0 R System Request Reset

Set if a system request reset has been performed. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how
to interpret this bit.

5 LOCKUPRST 0 R LOCKUP Reset

Set if a LOCKUP reset has been requested. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how to
interpret this bit.

4 WDOGRST 0 R Watchdog Reset

Set if a watchdog reset has been performed. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how to
interpret this bit.

3 EXTRST 0 R External Pin Reset

Set if an external pin reset has been performed. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how
to interpret this bit.

2 BODREGRST 0 R Brown Out Detector Regulated Domain Reset

Set if a regulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table 10.1 (p.
141) for details on how to interpret this bit.

1 BODUNREGRST 0 R Brown Out Detector Unregulated Domain Reset

Set if a unregulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table 10.1 (p.
141) for details on how to interpret this bit.

0 PORST 0 R Power On Reset

Set if a power on reset has been performed. Must be cleared by software. Please see Table 10.1 (p. 141) for details on how to
interpret this bit.

10.5.3 RMU_CMD - Command Register

— — —
Reset o
Access g
&
Name)
(6]
x

2015-01-13 - EZR32LG Family - | . www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 RCCLR 0 w1 Reset Cause Clear

Set this bit to clear the LOCKUPRST and SYSREQRST bits in the RMU_RSTCAUSE register. Use the HRCCLR bit in the
EMU_AUXCTRL register to clear the remaining bits.

www.silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

—_ A F ...the world's most energy friendly wireless MCUs

11 EMU - Energy Management Unit

What?

The EMU (Energy Management Unit)
handles the different low energy modes in the
EZR32LG microcontrollers.

Why?

The need for performance and peripheral
functions varies over time in most
applications. By efficiently scaling the
available resources in real-time to match
the demands of the application, the energy
consumption can be kept at a minimum.

How?

With a broad selection of energy modes,

a high number of low-energy peripherals
available even in EM2, and short wake-

up time (2 us from EM2 and EM3),
applications can dynamically minimize energy
consumption during program execution.

11.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EZR32LG
microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The
energy modes range from EMO to EM4, where EMO, also called run mode, enables the CPU and all
peripherals. The lowest recoverable energy mode, EM3, disables the CPU and most peripherals while
maintaining wake-up and RAM functionality. EM4 disables everything except the POR, pin reset and
optionally Backup RTC, 512 byte data retention, GPIO state retention, and EM4 reset wakeup request.

The various energy modes differ in:

» Energy consumption

e CPU activity

» Reaction time

* Wake-up triggers

*» Active peripherals

* Available clock sources

Low energy modes EM1 to EM4 are enabled through the application software. In EM1-EM3, a range
of wake-up triggers return the microcontroller back to EMO. EM4 can only return to EMO by power on
reset, external pin reset, EM4 GPIO wakeup request, or Backup RTC interrupt.

11.2 Features

» Energy Mode control from software
* Flexible wakeup from low energy modes
* Low wakeup time

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

11.3 Functional Description

The Energy Management Unit (EMU) is responsible for managing the wide range of energy modes
available in EZR32LG. An overview of the EMU module is shown in Figure 11.1 (p. 148) .

Figure 11.1. EMU Overview

Peripheral bus

Control and Energy Management
status registers State Machine
A
Voltage Oscillator Reset Memory Interrupt
Cortex regulator
system system system controller
system

The EMU is available as a peripheral on the peripheral bus. The energy management state machine
is triggered from the Cortex-M3 and controls the internal voltage regulators, oscillators, memories and
interrupt systems in the low energy modes. Events from the interrupt or reset systems can in turn cause
the energy management state machine to return to its active state. This is further described in the
following sections.

11.3.1 Energy Modes

There are five main energy modes available in EZR32LG, called Energy Mode 0 (EMO) through Energy
Mode 4 (EM4). EMO, also called the active mode, is the energy mode in which any peripheral function
can be enabled and the Cortex-M3 core is executing instructions. EM1 through EM4, also called low
energy modes, provide a selection of reduced peripheral functionality that also lead to reduced energy
consumption, as described below.

Figure 11.2 (p. 149) shows the transitions between different energy modes. After reset the EMU will
always start in EMO. A transition from EMO to another energy mode is always initiated by software. EMO
is the highest activity mode, in which all functionality is available. EMO is therefore also the mode with
highest energy consumption.

The low energy modes EM1 through EM4 result in less functionality being available, and therefore also
reduced energy consumption. The Cortex-M3 is not executing instructions in any low energy mode.
Each low energy mode provides different energy consumptions associated with it, for example because
a different set of peripherals are enabled or because these peripherals are configured differently.

A transition from EMO to a low energy mode can only be triggered by software.
A transition from EM1 — EM3 to EMO can be triggered by an enabled interrupt or event. In addition, a

chip reset will return the device to EMO. A transition from EM4 can be triggered by a pin reset, power-
on reset, EM4 GPIO wakeup, or Backup RTC interrupt.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

Figure 11.2. EMU Energy Mode Transitions

Active @
mode

Low energy
modes

Interrupt triggered wakeup
Reduced energy consumption

Software triggered sleep

pin reset,
power-on reset,

EM4 wakeup,
BURTC interrupt

No direct transitions between EM1, EM2 or EM3 are available, as can also be seen from Figure 11.2 (p.
149) . Instead, a wakeup will transition back to EMO, in which software can enter any other low energy
mode. An overview of the supported energy modes and the functionality available in each mode is shown
in Table 11.1 (p. 150). Most peripheral functionality indicated as "On" in a particular energy mode can
also be turned off from software in order to save further energy.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Table 11.1. EMU Energy Mode Overview

Wakeup time to EMO - - 2 s 2 us 160 ps
MCU clock tree On - - - -
High frequency peripheral clock trees On On - - -
Core voltage regulator On On - - -
High frequency oscillator On On - - -
1°C full functionality On On - - -
Low frequency peripheral clock trees On On On - -
Low frequency oscillator On On On - -
Real Time Counter On On On on’ -
LEUART On On On - -
LETIMER on on on on® -
LESENSE On On On on® -
PCNT On On On On -
ACMP On On On On -
I°C receive address recognition On On On On -
Watchdog On On On on® -
Pin interrupts On On On On -
RAM voltage regulator/RAM retention On On On On -
Brown Out Reset On On On On -
Power On Reset On On On On On
Pin Reset On On On On On
GPIO state retention On On On On on*
EM4 Reset Wakeup Request - - - - on*
Backup RTC On On On On On
Backup retention registers On On On On On

1Energy Mode O/Active Mode
2Energy Mode 1/2/3/4

3When the 1 kHz ULFRCO is selected
“Not available in Backup mode

The different Energy Modes are summarized in the following sections.

11.3.1.1 EMO

» The high frequency oscillator is active
» High frequency clock trees are active
* All peripheral functionality is available

11.3.1.2 EM1

» The high frequency oscillator is active

« MCU clock tree is inactive

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

L E ...the world's most energy friendly wireless MCUs

» High frequency peripheral clock trees are active
 All peripheral functionality is available

11.3.1.3 EM2

» The high frequency oscillator is inactive

» The high frequency peripheral and MCU clock trees are inactive

» The low frequency oscillator and clock trees are active

» Low frequency peripheral functionality is available

» Wakeup through peripheral interrupt or asynchronous pin interrupt
* RAM and register values are preserved

* DAC and OPAMPs are available

11.3.1.4 EM3

» Both high and low frequency oscillators and clock trees are inactive

» Wakeup through asynchronous pin interrupts, 1°C address recognition or ACMP edge interrupt

« Watchdog and some low frequency peripherals available when ULFRCO (1 kHz clock) has been
selected

« BURTC is available.

* All other peripheral functionality is disabled
 RAM and register values are preserved

* DAC and OPAMPs are available

11.3.1.5 EM4

* All oscillators and regulators are inactive, if Backup RTC is not enabled.

« RAM and register values are not preserved, except for the ones located in the Backup RTC.
» Optional GPIO state retention

» Wakeup from Backup RTC interrupt, external pin reset or pins that support EM4 wakeup

11.3.2 Entering a Low Energy Mode

A low energy mode is entered by first configuring the desired Energy Mode through the EMU_CTRL
register and the SLEEPDEEP bit in the Cortex-M3 System Control Register, see Table 11.2 (p. 152).
A Wait For Interrupt (WFI) or Wait For Event (WFE) instruction from the Cortex-M3 triggers the transition
into a low energy mode.

The transition into a low energy mode can optionally be delayed until the lowest priority Interrupt Service
Routine (ISR) is exited, if the SLEEPONEXIT bit in the Cortex-M3 System Control Register is set.

Entering the lowest energy mode, EM4, is done by writing a sequence to the EM4CTRL bitfield in
the EMU_CTRL register. Writing a zero to the EM4CTRL bitfield will restart the power sequence.
EM2BLOCK prevents the EMU to enter EM2 or lower, and it will instead enter EM1.

EMS3 is equal to EM2, except that the LFACLK/LFBCLK are disabled in EM3. The LFACLK/LFBCLK
must be disabled by the user before entering low energy mode.

The EMVREG bit in EMU_CTRL can be used to prevent the voltage regulator from being turned off
in low energy modes. The device will then essentially stay in EM1 (with HF oscillators disabled) when
entering a low energy mode. Note that if a DMA transfer is initiated in this mode, the HF-oscillators will
start and remain enabled until the device is woken up from an EM2 interrupt.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Table 11.2. EMU Entering a Low Energy Mode

Low Energy Mode EMACTRL EMVREG EM2BLOCK SLEEPDEEP Cortex-M3
Instruction
EM1 0 X X 0 WFI or WFE
EM2 0 0 0 1 WFI or WFE
EM4 Write sequence: | X X X X
2,3,2,3,2,3,2,
3,2

(‘X" means don't care)

11.3.3 Leaving a Low Energy Mode

In each low energy mode a selection of peripheral units are available, and software can either enable or
disable the functionality. Enabled interrupts that can cause wakeup from a low energy mode are shown
in Table 11.3 (p. 153) . The wakeup triggers always return the EZR32 to EMO. Additionally, any reset
source will return to EMO.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

Table 11.3. EMU Wakeup Triggers from Low Energy Modes

RTC Any enabled interrupt - Yes Yes Yes® -
USART Receive / transmit - Yes - - -
UART Receive / transmit - Yes - - -
LEUART Receive / transmit - Yes Yes - -
LESENSE Any enabled interrupt - Yes Yes Yes® -
1’c Any enabled interrupt - Yes - - -
1°c Receive address recognition - Yes Yes Yes -
TIMER Any enabled interrupt - Yes - - -
LETIMER Any enabled interrupt - Yes Yes Yes® -
CMU Any enabled interrupt - Yes - - -
DMA Any enabled interrupt - Yes - - -
MSC Any enabled interrupt - Yes - - -
DAC Any enabled interrupt - Yes - - -
ADC Any enabled interrupt - Yes - - -
AES Any enabled interrupt - Yes - - -
PCNT Any enabled interrupt - Yes Yes Yes* -
ACMP Any enabled edge interrupt - Yes Yes Yes -
VCMP Any enabled edge interrupt - Yes Yes Yes -
Pin interrupts Asynchronous - Yes Yes Yes -
Pin Reset - Yes Yes Yes Yes
EM4 wakeup on supported Asynchronous - - - - Yes
pins

Backup RTC Any enabled interrupt Yes Yes Yes Yes Yes
Power Cycle Off/On Yes Yes Yes Yes

lEnergy Mode 0/Active Mode
2Energy mode 1/2/3/4

3When the 1 kHz ULFRCO is selected
*When using an external clock

11.3.4 Backup power domain

11.3.4.1 Introduction

The EZR32LG has the possibility to be partly powered by a backup battery. The backup power input,
BU_VIN, is connected to a power domain in the EZR32LG containing the Backup RTC and 512 bytes of
data retention, available in all energy modes. Figure 11.3 (p. 154) shows an overview of the backup
powering scheme. During normal operation, the entire chip is powered by the main power supply. If the
main power supply drains out and the Backup mode functionality is enabled, the system enters a low
energy mode, equivalent to EM4, and automatically switches over to the backup power supply.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Figure 11.3. Backup power domain overview

BUCTRL_STATEN

BUCTRL_EN BU_ST AT
Main power BOD DQ {>Q E

BUINACT_PWRCON /
BUACT_PWRCON 1 X Pwrconr purres

-~ l BUBODBUVIN
j BU_VIN

Backup power -
VDD_DREG —{ M A— e X Backup
Main Main power power
suppl
power - pply

supply
= «— —
Main domain [BUBODVDDDRES | m
BU_VOUT
MEDIUM -
[BBOOUNRES gl 1]

Backup regulator WEAK ~_~
1

. PWRCONF_VOUTxxx
Backup domain

SW reset———Pp

reset

BURTC 512 byte
Wake-Up | retention

Wake- up

POR o controller ——Main power OK

EM4 pin Wake- Up
|

BOD WDOG

g RESETn

When in backup mode, available functionality is the same as the functionality available in EM4. Refer
to Section 11.3.4.10 (p. 157) for further details.

11.3.4.2 Brown out detectors

The backup power domain functionality utilizes four brown-out detectors, BODs. One senses the main
power supply, one senses the backup power supply, one senses the unregulated selected power supply
(main or backup, depending on mode), and one BOD senses the regulated power supply. The bits
BUBODVDDDREG ,BUBODBUVIN, BUBODUNREG, and BUBODREG in the RSTCAUSE register in
the RMU are set when the associated BOD triggers. The locations of the Backup BODs are indicated in
Figure 11.3 (p. 154). A brown out on the main power supply will trigger a switch to the backup power
supply if the backup functionality is enabled and the BOD sensing on the backup power supply has not
triggered. The two other BODs are used for error indication and will only set the bits in RMU_RSTCAUSE
if they are triggered.

11.3.4.3 Entering backup mode

To be able to enter backup mode, the EN bit in EMU_BUCTRL has to be set. The BURDY interrupt
flag will be set as soon as the backup sensing module is operational. Status of the backup functionality
is also available in the BURDY flag in the EMU_STATUS register. The BU_VIN pin also needs to be
enabled. This is done by setting the BUVINPEN bit in EMU_ROUTE. To enter backup mode, the voltage
on VDD_DREG has to drop below the programmable threshold of the BOD sensing on this power. This
threshold is programmed using BUENRANGE and BUENTHRES in EMU_BUINACT. BUENRANGE
decides the voltage range for the BOD, while BUENTHRES is used for tuning of the BOD threshold.
Refer to Section 11.3.4.5 (p. 155) for details regarding BOD calibration.

Note

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

BUVINPEN in EMU_ROUTE is by default set. If Backup mode is not to be used, this bit
should be cleared.

Note
The voltage on BU_VIN has to be above the threshold for the BOD sensing on BU_VIN to
enter backup mode.

The BU_STAT pin can be used to indicate whether or not the system is in backup mode. To enable
exporting of the backup mode status, set STATEN in EMU_BUCTRL and enable the GPIO clock. The
BU_STAT pin is driven to BU_VIN when backup mode is active and to ground otherwise.

11.3.4.4 Leaving backup mode
To exit backup mode, the voltage on VDD_DREG has to be above the threshold programmed in
EMU_BUACT. BUEXRANGE decides the voltage range for backup mode exit, while BUEXTHRES is
used for tuning. When leaving backup mode, a system reset is triggered, resetting everything except the
backup domain. When backup mode has been active, the BURST bit in RMU_RSTCAUSE is set.

Figure 11.4. Entering and leaving backup mode

VDDREG

EMU_BUACT_BUEXRANGE /
EMU_BUACT_BUEXTHRES

EMU_BUINACT_BUENRANGE /
EMU_BUINACT_BUENTHRES

) Time

Backup mode active] 1

Figure 11.4 (p. 155) illustrates how the BOD sensing on VDD_DREG can be programmed to
implement hysteresis on entering and exiting backup mode.

11.3.4.5 Threshold calibration

The thresholds for entering and exiting backup mode are configured in the EMU_BUINACT and
EMU_BUACT registers, respectively. Calibration of these thresholds is performed during production
test, but may also be performed using the DAC. The calibration values for the BODs sensing on
unregulated power and BU_VIN, BUBODUNREG and BUBODBUVIN respectively, are available in
EMU_BUBODVINCAL and EMU_BUBODUNREGCAL. These registers are written during production
test and should not be modified except for calibrating the Backup BOD sensing on VDD _DREG, as
described in the following section.

Setting BODCAL in EMU_BUCTRL will enable a mode where the BOD is sensing the DAC output, as
depicted in Figure 11.5 (p. 156) . For the BODCAL bit to take effect, the backup power enable bit, EN
in EMU_BUCTRL, has to be cleared. The procedure for BOD calibration is as follows:

e Clear EN and set BODCAL in EMU_BUCTRL.

» Store the values in EMU_BUBODVINCAL and EMU_BUBODUNREGCAL before clearing these
registers.

» Configure the DAC to output to the maximum level and wait for 500 us before configuring the DAC
output to the wanted BOD trigger voltage level.

» Step through the BOD calibration values (RANGE and THRES in EMU_BUINACT) with 500 us delay in
between steps until the BUBODVDDDREG flag in RMU_RSTCAUSE is set. The RANGE and THRES

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

values in EMU_BUINACT can now be written to EMU_BUINACT for configuration of threshold for
entering backup mode, or EMU_BUACT for configuration of the threshold for leaving backup mode.
» Restore the values in EMU_BUBODVINCAL and EMU_BUBODUNREGCAL.

Figure 11.5. BOD calibration using DAC

BUCTRL_BODCAL

VDD_DREG
1.8V DAC alternative output
» 2
BOD trigg Z
EMU_BUINACT_BUENRANGE /
L EMU_BUINACT_BUENTHRES

11.3.4.6 Backup battery charging

The EZR32LG includes functionality for charging of the backup battery. This is done by connecting
the main power and the backup power through a resistor, and optionally a diode. The connection is
configured individually for when in backup mode and when in normal mode. When in normal mode, the
connection is configured in PWRCON in EMU_BUINACT. PWRCON in EMU_BUACT configures the
connection when in backup mode. The series resistance between the two power domains is configured
in PWRRES in EMU_PWRCONF, this configuration applies both to backup mode and normal mode.

11.3.4.7 Supply voltage output

To be able to power external devices, the supply voltage for the backup domain is available as an output.
Three switches connect the backup supply voltage to the BU_VOUT pin. To be able to control the series
resistance, the switches have different strengths: weak, medium, and strong. The switches are controlled
using the VOUTWEAK, VOUTMED, and VOUTSTRONG bits in EMU_PWRCONF. For resistor values,
refer to Device Datasheet Electrical Characteristics.

11.3.4.8 Voltage probing

It is possible to probe the voltage levels at VDD_DREG, BU_VIN, and BU_VOUT. This is done by
configuring the ADC to measure a tristated channel, for instance a disabled DAC channel. The PROBE
bitfield in EMU_BUCTRL configures which voltage to be probed. The voltage measured by the ADC will
be 1/8 of the actual probed voltage, meaning that the result needs to be multiplied by 8 for the correct
result. Voltage probing does not work when BODCAL in the EMU_BUCTRL register is set.

11.3.4.9 Configuration lock

Configurations used in Backup mode and EM4, like BOD calibration, and Backup RTC settings need
to be locked before entering EM4, this is done by setting the LOCKCONF bit in EMU_EM4CONF. This
bit should also be set before a potential entry to backup mode. Setting this bit will lock following the
configuration:

* LFXOMODE, LFXOBUFCUR, and LFXOBOOST in CMU_CTRL
* TUNING in CMU_LFRCOCTRL

* BURSTEN in RMU_CTRL

« BURTCWU and VREGEN in EMU_EM4CONF

« EMU_BUCTRL

* EMU_PWRCONF

« EMU_BUINACT

« EMU_BUACT

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

« EMU_ROUTE

Note
For registers residing in the CMU and EMU_AUXCTRL, the reset value will be read after
exit from EM4 or Backup mode, but if LOCKCONF in EMU_EM4CONF has been set, the
locked configuration will be used until LOCKCONTF is cleared. This also applies for the
LOCKCONF bit itself.

The LOCKCONEF bit does not lock the PROBE bitfield in EMU_BUCTRL.
11.3.4.10 EM4 with RTC and data retention

The backup power domain can also be powered by the main power. This provides possibility for
Backup RTC operation and data retention in EM4. Available functionality in EM4 is configured in
EMU_EMA4CONF. Setting the VREGEN bit will keep the voltage regulator for the Backup domain enabled
when in EM4. This allows the Backup RTC to keep running. To enable the Backup RTC to wake up
the system from EM4, BURTCWU in EMU_EM4CONF needs to be set. When BURTCWU is set, any
enabled Backup RTC interrupt will wake up the system. For further details regarding the Backup RTC
and EM4 data retention, refer to Chapter 22 (p. 542) .

The voltage regulator can also be used to power the Backup RTC during a watchdog reset from any
energy mode. Set EMU_EMA4CONF_VREGEN to enable the Backup RTC to be powered from the
regulator, making sure it survives a watchdog reset.

11.3.4.10.1 Oscillators in EM4

When the system is in EM4 or backup mode with the voltage regulator enabled, the ULFRCO is by
default enabled. If the LFXO or LFRCO is used by the Backup RTC, the ULFRCO can be shut down to
reduce power consumption. To do this, configure the OSC bitfield in EMU_EM4CONF.

Note
If OSC in EMU_EM4CONF is not set to ULFRCO, PRESC and LPCOMP in BURTC_CTRL
has to be configured in the following manner:

* 4<(PRESC + LPCOMP) < 8, PRESC =0,5,6,7
Refer to Chapter 22 (p. 542) for details on how to configure the Backup RTC.
11.3.4.10.2 Brown-out detector in EM4

To enable Brown-out detection in EM4, the Backup BODs have to be enabled, by setting EN in
EMU_BUCTRL. When BURDY in EMU_STATUS is set, the Brown-out detectors are ready and able to
issue a reset from EM4 if a Brown-out is detected on either regulated or unregulated power. The Backup
BOD' ability to issue reset from EM4 can be disabled by setting BUBODRSTDIS in EMU_EM4CONF.

Note
The Backup BODs can be enabled without allowing entrance to backup mode. This is done
by setting EN in EMU_BUCTRL, and clearing BUVINPEN in EMU_ROUTE.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

11.4 Register Map

The offset register address is relative to the registers base address.

Offset INEINE Type Description

0x000 EMU_CTRL RW Control Register

0x008 EMU_LOCK RW Configuration Lock Register

0x024 EMU_AUXCTRL RW Auxiliary Control Register

0x02C EMU_EM4CONF RW Energy mode 4 configuration register
0x030 EMU_BUCTRL RW Backup Power configuration register

0x034 EMU_PWRCONF RW Power connection configuration register
0x038 EMU_BUINACT RW Backup mode inactive configuration register
0x03C EMU_BUACT RW Backup mode active configuration register
0x040 EMU_STATUS R Status register

0x044 EMU_ROUTE RW 1/0 Routing Register

0x048 EMU_IF R Interrupt Flag Register

0x04C EMU_IFS w1 Interrupt Flag Set Register

0x050 EMU_IFC w1 Interrupt Flag Clear Register

0x054 EMU_IEN RW Interrupt Enable Register

0x058 EMU_BUBODBUVINCAL RW BU_VIN Backup BOD calibration

0x05C EMU_BUBODUNREGCAL RW Unregulated power Backup BOD calibration

11.5 Register Description

11.5.1 EMU_CTRL - Control Register

Offset Bit Position
0000 |F |8 (%8 |~[ee|3|q| | [R|3a|[5|e(a|I|Y =[S]|o|o|~|olw|v|o|a|a]o
Reset §<’
o
Access E E 2
g |89
Name 5 Sl
< @2
= |95
w o
Bit NEE] Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2 EM4CTRL 0x0 RW Energy Mode 4 Control
This register is used to enter Energy Mode 4, in which the device only wakes up from an external pin reset, from a power cycle,
Backup RTC interrupt, or EM4 wakeup reset request. Energy Mode 4 is entered when the EM4 sequence is written to this bitfield.
1 EM2BLOCK 0 RW Energy Mode 2 Block
This bit is used to prevent the MCU to enter Energy Mode 2 or lower.
0 EMVREG 0 RW Energy Mode Voltage Regulator Control

Control the voltage regulator in low energy modes 2 and 3.

Value Mode Description
0 REDUCED Reduced voltage regulator drive strength in EM2 and EM3.
1 FULL Full voltage regulator drive strength in EM2 and EM3.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

11.5.2 EMU_LOCK - Configuration Lock Register

Offset

Bit Position

0x008 SI3IRXIQIKIQQII|Q|V[J[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow || mo|n|-d]|o0
o
o
Reset 8
x
o
Access E
>
]
Name §
o
e}
)
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock Key

Write any other value than the unlock code to lock all EMU registers, except the interrupt registers, from editing. Write the unlock
code to unlock. When reading the register, bit O is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 EMU registers are unlocked.
LOCKED 1 EMU registers are locked.
Write Operation

LOCK 0 Lock EMU registers.
UNLOCK OxADES8 Unlock EMU registers.

11.5.3 EMU_AUXCTRL - Auxiliary Control Register

Offset

Bit Position

0x024 SI3IXIQ|IKIQQII|Q|V[J R85 |2 |23 |G8Y |2 |S|o|o|~|ow |t |o|n|d]|o

Reset

Access 5
&

Name Q
O
x
T

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

HRCCLR 0

RW

Hard Reset Cause Clear

Write to 1 and then 0 to clear the POR, BOD and WDOG reset cause register bits. See also the Reset Management Unit (RMU).

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

11.5.4 EMU_EMA4CONF - Energy mode 4 configuration register

Offset Bit Position
R R N R R R N S E B R A R BN E o | |o oo
Reset §<>
o
Access E E E E E
2]
= = 2|z
Name 8 bl @ |08
< g e} £l
(@] =) 14
(@] 8 o |~
- 5
m
Bit INETE) Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 LOCKCONF 0 RW EM4 configuration lock enable
Lock regulator, BOD and oscillator configuration. This is necessary before going to EM4 if the regulator is to be used in EM4, and
must also be done before a potential entry to backup mode.
15:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 BUBODRSTDIS 0 RW Disable reset from Backup BOD in EM4
When set, no reset will be asserted due to Brownout when in EM4.
3:2 OosC 0x0 RW Select EM4 duty oscillator
Value Mode Description
0 ULFRCO ULFRCO is available.
1 LFRCO LFRCO is available. Can only be set if LFRCO is running before EM4/backup entry.
2 LFXO LFXO is available. Can only be set if LFXO is available before EM4/backup entry.
1 BURTCWU 0 RW Backup RTC EM4 wakeup enable
Exit EM4 on Backup RTC interrupt.
0 VREGEN 0 RW EM4 voltage regulator enable

When set, the voltage regulator is enabled in EM4, enabling operation of the Backup RTC and retention registers.

11.5.5 EMU_BUCTRL - Backup Power configuration register

Bit Position
0x030 S|3 || |J|QQ|I|IQ(J|J|R|IE|T|S |8 |3 |QY¥ | |S|o|o|~|ow | |0 a|d]0
Reset)
o
Access 5 @ @ E
4 2|E
Name Z
: HHE
= Q|
Bit Name Reset Access Description
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:5 PROBE 0x0 RW Voltage probe select
Configure which voltage to export to ADC.
Value Mode Description
0 DISABLE Disable voltage probe.
1 VDDDREG Connect probe to VDD_DREG.
2 BUIN Connect probe to BU_IN.

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
Value Mode Description
3 BUOUT Connect probe to BU_OUT.
4:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2 BODCAL 0 RW Enable BOD calibration mode
When set, the Backup BOD sensing on VDD_DREG will be sensing the DAC output.
1 STATEN 0 RW Enable backup mode status export
When enabled, BU_STAT will indicate when backup mode is active.
0 EN 0 RW Enable backup mode

Backup mode will be entered when main power browns out and backup battery is present.

11.5.6 EMU_PWRCONF - Power connection configuration register

Offset Bit Position
0x034 S8 |||V IV |J QIS |58 (2|32 |(d|S|o|o|~|ow|s|mn|l~|d]|0
Reset =
o
Access 5 E 5 5
o
g ¥
Q@ |86
Name & EIE|=
= (21315
o o} 9 o
o} >
>
Bit INETE) Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

4:3 PWRRES 0x0 RW Power domain resistor select
Select value of series resistor between main power domain and backup power domain.
Value Mode Description
0 RESO Main power and backup power connected with RESO series resistance.
1 RES1 Main power and backup power connected with RES1 series resistance.
2 RES2 Main power and backup power connected with RES2 series resistance.
3 RES3 Main power and backup power connected with RES3 series resistance.
2 VOUTSTRONG 0 RW BU_VOUT strong enable
Enable strong switch between backup domain power supply and BU_VOUT.
1 VOUTMED 0 RW BU_VOUT medium enable
Enable medium switch between backup domain power supply and BU_VOUT.
0 VOUTWEAK 0 RW BU_VOUT weak enable

Enable weak switch between backup domain power supply and BU_VOUT.

11.5.7 EMU_BUINACT - Backup mode inactive configuration register

Offset

Bit Position

dlo|lo|lo|lr|low s |lolald|lo|loe|~]|o|w|s|oo|a]lo
0x038 » | @A N | dd[Q|a|N|N|Q|Aa|a|a|lalalaa|a|al@|o |~ |jow S ®

1

Reset

RW |0x0
RW |0x1

Access

RW |0x3

Name

PWRCON
BUENRANGE

BUENTHRES

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

— L

R*

...the world's most energy friendly wireless MCUs

317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:5 PWRCON 0x0 RW Power connection configuration when not in Backup mode
Value Mode Description
0 NONE No connection.
1 BUMAIN Main power and backup power are connected through a diode, allowing current to flow
from backup power source to main power source, but not the other way.
2 MAINBU Main power and backup power are connected through a diode, allowing current to flow
from main power source to backup power source, but not the other way.
3 NODIODE Main power and backup power are connected without diode.
4:3 BUENRANGE Ox1 RW
Threshold range for Backup BOD sensing on VDD_DREG when not in backup mode. This field is set to the threshold range calibrated
during production, hence the reset value might differ from device to device.
2:0 BUENTHRES 0x3 RW

Threshold for Backup BOD sensing on VDD_DREG when not in backup mode. This field is set to the threshold value calibrated
during production, hence the reset value might differ from device to device.

11.5.8

EMU_BUACT - Backup mode active configuration register

oo |z |8le|a|s|gs|sa]s]s|s|ea|x|a]a[x|gs]a]2]a o]~ ool]o)a]-]o
Reset = > 2
o o o
Access E 5 5
w
Z Q 2
o} =4 4
Name O < I
14 14 [
z) n)
& =) =)
m o
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:5 PWRCON 0x0 RW Power connection configuration when in Backup mode
Value Mode Description
0 NONE No connection.
1 BUMAIN Main power and backup power are connected through a diode, allowing current to flow
from backup power source to main power source, but not the other way.
2 MAINBU Main power and backup power are connected through a diode, allowing current to flow
from main power source to backup power source, but not the other way.
3 NODIODE Main power and backup power are connected without diode.
4:3 BUEXRANGE Ox1 RW
Threshold range for Backup BOD sensing on VDD_DREG when in backup mode. This field is set to the threshold range calibrated
during production, hence the reset value might differ from device to device.
2:0 BUEXTHRES 0x3 RW

Threshold for Backup BOD sensing on VDD_DREG when in backup mode. This field is set to the threshold value calibrated during
production, hence the reset value might differ from device to device.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

11.5.9 EMU_STATUS - Status register

Offset Bit Position

0x040 S |82/ |IJI|Q(V|J |3 |5 |82 |3 g (d|8|o|o|~jow |t o N0

Reset o

Access o
>-

Name 2
>
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BURDY 0 R Backup mode ready

Set when the Backup power functionality is ready.

11.5.10 EMU_ROUTE - I/0O Routing Register

Offset Bit Position

IR RN R R NS B R A R E e A R N A R R R A K

Reset —

Access E
z
L

Name [N
Z
>
>
1]

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BUVINPEN 1 RW BU_VIN Pin Enable

When set, the BU_VIN pin is enabled.

11.5.11 EMU_IF - Interrupt Flag Register

Bit Position

o048 |3 |8 |% 8|8 (e3[R |ge|5|e|a 3|2y |28 |o|o|~|ow|v|o|a]|]0

Reset o

Access 4
>

Name 2
>
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BURDY 0 R Backup functionality ready Interrupt Flag

Set when the Backup functionality is ready for use.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

11.5.12 EMU_IFS - Interrupt Flag Set Register

Offset Bit Position

0x04C S| |Q|IQ|J|QQ I ||V |J |8 |5 |8 |83 |Qy|= |8 w s |o|N || o

Reset o

Access E
>-

Name 2
>
m

Bit Name Reset Access Description

Sl Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BURDY 0 W1
Write to 1 to set the BURDY interrupt flag.

Set Backup functionality ready Interrupt Flag

11.5.13 EMU_IFC - Interrupt Flag Clear Register

Offset Bit Position

0x050 S| || |IK|QQ|I|Q |V | |GG |5 |8 |83 |3y |22 w s |o N oo

Reset o

Access g
>

Name 2
>
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BURDY 0 w1 Clear Backup functionality ready Interrupt Flag

Write to 1 to clear the BURDY interrupt flag.

11.5.14 EMU_IEN - Interrupt Enable Register

Bit Position

0x054 S|3|IQ|J|QQ|I ||V || |5 |8 |83 |2y |28 Wi |o|a|d o

Reset

Access 5
>

Name E
>
m

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BURDY 0 RW

Enable interrupt when Backup functionality is ready.

Backup functionality ready Interrupt Enable

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

11.5.15 EMU_BUBODBUVINCAL - BU_VIN Backup BOD calibration

Offset Bit Position
0x058 58|V IQQ|II|Q(V|J|RIS3 |58 (2|3 Qs |d|8|o|e|~|ow|s|m|ln|d]|o
Reset g g
Access E E
Name '%DJ g

o4 =
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4:3 RANGE 0x1 RW

Threshold range for Backup BOD sensing on BU_VIN. This field is set to the threshold range calibrated during production, hence
the reset value might differ from device to device.

2:0 THRES 0x3 RW

Threshold for Backup BOD sensing on BU_VIN. This field is set to the threshold value calibrated during production, hence the reset
value might differ from device to device.

11.5.16 EMU_BUBODUNREGCAL - Unregulated power Backup BOD
calibration

Offset Bit Position
0x05C S8R/ |IJI|Q (VN |J LIS |5 |83 |(d|8|o|o|~|ow|s|o|N|d]|o
Reset X Q

o o
Access E E

w %]
Name g o

< T

o4 =
Bit NETE) Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4:3 RANGE Ox1 RW

Threshold range for Backup BOD sensing on unregulated power. This field is set to the threshold range calibrated during production,
hence the reset value might differ from device to device.

2:0 THRES 0x3 RW

Threshold for Backup BOD sensing on unregulated power. This field is set to the threshold value calibrated during production, hence
the reset value might differ from device to device.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A F ...the world's most energy friendly wireless MCUs

12 CMU - Clock Management Unit

What?

The CMU controls oscillators and clocks.
EZR32LG supports five different oscillators
with minimized power consumption and short
start-up time. An additional separate RC
oscillator is used for flash programming and
debug trace. The CMU also has HW support
for calibration of RC oscillators.
Why?

wwooscock | [| [| [Oscillators and clocks contribute significantly
to the power consumption of the MCU. With
9 LETIMER clock the low power oscillators combined with the
flexible clock control scheme, it is possible
cMu to minimize the energy consumption in any

| eerionerat aciock [N LU given application.
[Peripheral B clock HOW?

[Perpherel € clock “"mmm""m The CMU can configure different clock

|- Peripheral D clock m,mm""mm sources, enable/disable clocks to peripherals
on an individual basis and set the prescaler
P CPU clock [UTTUUUUTNTTUUUITINT for the different clocks. The short oscillator
start-up times makes duty-cycling between
active mode and the different low energy
modes (EM2-EM4) very efficient. The
calibration feature ensures high accuracy RC
oscillators. Several interrupts are available to
avoid CPU polling of flags.

Oscillator

Y

12.1 Introduction

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board
the EZR32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree
of flexibility enables software to minimize energy consumption in any specific application by not wasting
power on peripherals and oscillators that are inactive.

12.2 Features

* Multiple clock sources available:

» 1-28 MHz High Frequency RC Oscillator (HFRCO)
4-48 MHz High Frequency Crystal Oscillator (HFXO)
32768 Hz Low Frequency RC Oscillator (LFRCO)
32768 Hz Low Frequency Crystal Oscillator (LFXO)
1000 Hz Ultra Low Frequency RC Oscillator (ULFRCO)

» Low power oscillators

* Low start-up times

e Separate prescaler for High Frequency Core Clocks (HFCORECLK) and Peripheral Clocks
(HFPERCLK)

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

Individual clock prescaler selection for each Low Energy Peripheral

Clock Gating on an individual basis to core modules and all peripherals

Selectable clocks can be output on two pins for use externally.

Auxiliary 1-28 MHz RC oscillator (AUXHFRCO) for flash programming, and debug trace, and
LESENSE timing.

12.3 Functional Description

An overview of the CMU is shown in Figure 12.1 (p. 168). The number of peripheral modules that are
connected to the different clocks varies from device to device.

www.silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

®
t Z R ...the world's most energy friendly wireless MCUs

Figure 12.1. CMU Overview

MSsC

AUXHFRCO Timeout| AUXCLK

—
—

Clock HFPERCLKrimero
TR,
Gate

CMU_CTRL_DBGCLK

|
|
| Debug Trace
|
|

| clock
» switch CMU_HFPERCLKENO. TIMERDO ———

CMU_HFPERCLKENO. TIMERL ——

CMU_HFPERCLKDIV.HFPERCLKEN ~ ——— HFPERCLK
prescaler
CMU_HFPERCLKENO.12C0 —|

CMU_HFPERCLKDIV.HFPERCLKDIV Clock HFPERCLK 2¢co
fTTTEC0
Gate

Clock HFPERCLK e
]
Gate

CMU_CTRL HFCLKDIV

clock | | HFCLK
—®{ switch DIV HFCLK
™
Timeout
Mo ——
HFRCO | Clock HFCORECLKcws
o

CMU_CMD.HFCLKSEL. Gate

HFXO -
Timeout

CMU_HFCORECLKDIV

Clock HFCORECLKpwma,

CMU_HFCORECLKENO.DMA
HFCORECLK Gate [™
prescaler .

CMU_CMD. USBCCLKSEL

CMU_HFCORECLKENO.USBC

™ —
| clock HFCORECLKysac CMU_HFCORECLKENO.LE Clock HFCORECLK ¢
switch Gate
12 0r /4 -
CMU_LFACLKENO LESENSE ——|
- Clock LFACLK esense
Gate !
4@
Lm0 Cmu_LrarRESCD Lesese
imeou
CMU_LFACLKENO.RTC ——
N Clock LFACLKrc
Gate !
@
Timeout CMU_LFAPRESCO.RTC
CMU_LFACLKENO LETIMER) ——

Clock LFACLK ermero

Gate p Pr

prescaler

lock CMU_LFAPRESCO.LETIMERD
clocl LFACLK. CMU_LFACLKENO.LCD Clock LFACLK.co

itch
switel LFACLK copre Gate »

prescaler Frame Rate Control

Yy WL

T
CMU_LFCLKSEL LFA / LFAE CMU_LCDCTRLFDIV
- CMU_LFAPRESCO.LCD

PCNTn_SO
PCNTnCLK

CMU_PCNTCTRL.PCNTNCLKSEL

CMU_LFBPRESCO.LEUARTO CMU_LFBCLKENO.LEUARTO ——]
N Clock LFBCLK uarro

Gate |

CMU_LFCLKSEL.LFB/ LFBE

prescaler

clock | LFBCLK
switch CMULFECLIENO LEUARTL Clock LFBCLK easr1

Gate g

AA VL

prescaler

CMU_LFBPRESCO.LEUARTL

[WDOGCLK WDOG
ULFRCO

WDOG_CTRL.CLKSEL

12.3.1 System Clocks

12.3.1.1 HFCLK - High Frequency Clock

HFCLK is the selected High Frequency Clock. This clock is used by the CMU and drives the two
prescalers that generate HFCORECLK and HFPERCLK. The HFCLK can be driven by a high-frequency
oscillator (HFRCO or HFXO) or one of the low-frequency oscillators (LFRCO or LFXO). By default the
HFRCO is selected. In most applications, one of the high frequency oscillators will be the preferred

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ‘j ...the world's most energy friendly wireless MCUs

choice. To change the selected HFCLK write to HFCLKSEL in CMU_CMD. The HFCLK is running in
EMO and EM1.

HFCLK can optionally be divided down by setting HFCLKDIV in CMU_CTRL to a nonzero value. This
divides down HFCLK to all high frequency components except the USB Core and is typically used to
save energy in USB applications where the system is not required to run at 48 MHz. Combined with the
HFCORECLK and HFPERCLK prescalers the HFCLK divider also allows for more flexible clock division.

12.3.1.2 HFCORECLK - High Frequency Core Clock

HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of
the CPU and modules that are tightly coupled to the CPU, e.g. MSC, DMA etc. This also includes the
interface to the Low Energy Peripherals. Some of the modules that are driven by this clock can be clock
gated completely when not in use. This is done by clearing the clock enable bit for the specific module
in CMU_HFCORECLKENQO. The frequency of HFCORECLK is set using the CMU_HFCORECLKDIV
register. The setting can be changed dynamically and the new setting takes effect immediately.

The USB Core runs on HFCORECLKsgc. Selectable clock sources are LFXO, LFRCO , HFCLK . If
HFCLK is selected, it will always be undivided, regardless of the HFCLKDIV setting. When the USB
Core is active this clock must be switched to a 32 kHz clock (LFRCO or LFXO) when entering EM2.
The USB Core uses this clock for monitoring the USB bus. The switch is done by writing USBCCLKSEL
in CMU_CMD. The currently active clock can be checked by reading CMU_STATUS. The clock switch
can take up to 1.5 32 kHz cycle (45 us). To avoid polling the clock selection status when switching from
32 kHz to HFCLK when coming up from EM2 the USBCHFCLKSEL interrupt can be used. EM3 is not
supported when the USB is active.

Note
Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. Please
refer to Section 6.2.3.2 (p. 60) for more details.

12.3.1.3 HFPERCLK - High Frequency Peripheral Clock

Like HFCORECLK, HFPERCLK can also be a prescaled version of HFCLK. This clock drives the
High-Frequency Peripherals. All the peripherals that are driven by this clock can be clock gated
completely when not in use. This is done by clearing the clock enable bit for the specific peripheral in
CMU_HFPERCLKENO. The frequency of HFPERCLK is set using the CMU_HFPERCLKDIV register.
The setting can be changed dynamically and the new setting takes effect immediately.

Note
Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. E.g. if a
bus-access normally takes three cycles, it will take 9 cycles if HFPERCLK runs three times
as fast as the HFCORECLK.

12.3.1.4 LFACLK - Low Frequency A Clock

LFACLK is the selected clock for the Low Energy A Peripherals. There are four selectable sources for
LFACLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFACLK can be disabled. From
reset, the LFACLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFA field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the
Low Energy A Peripherals to be used as high-frequency peripherals.

Note
If HFCORECLK/2 is selected as LFACLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit. The
prescaler settings are configured using CMU_LFAPRESCO and the clock enable bits can be found in
CMU_LFACLKENO. When operating in oversampling mode, the pulse counters are clocked by LFACLK.
This is configured for each pulse counter (n) individually by setting PCNTNCLKSEL in CMU_PCNTCTRL.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

12.3.1.5 LFBCLK - Low Frequency B Clock

LFBCLK is the selected clock for the Low Energy B Peripherals. There are four selectable sources for
LFBCLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFBCLK can be disabled. From
reset, the LFBCLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFB field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the
Low Energy B Peripherals to be used as high-frequency peripherals.

Note
If HFCORECLK/2 is selected as LFBCLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFBCLK has its own prescaler setting and enable bit.
The prescaler settings are configured using CMU_LFBPRESCO and the clock enable bits can be found
in CMU_LFBCLKENO.

12.3.1.6 PCNTNCLK - Pulse Counter n Clock

Each available pulse counter is driven by its own clock, PCNTnCLK where n is the pulse counter instance
number. Each pulse counter can be configured to use an external pin (PCNTn_S0) or LFACLK as
PCNTNCLK.

12.3.1.7 WDOGCLK - Watchdog Timer Clock

The Watchdog Timer (WDOG) can be configured to use one of three different clock sources: LFRCO,
LFXO or ULFRCO. ULFRCO (Ultra Low Frequency RC Oscillator) is a separate 1 kHz RC oscillator
that also runs in EMS3.

12.3.1.8 AUXCLK - Auxiliary Clock

AUXCLK is a 1-28 MHz clock driven by a separate RC oscillator, AUXHFRCO. This clock is used for flash
programming , and Serial Wire Output (SWO) , and LESENSE operation. During flash programming , or
if needed by LESENSE, this clock will be active. If the AUXHFRCO has not been enabled explicitly by
software, the MSC or LESENSE module will automatically start and stop it. The AUXHFRCO is enabled
by writing a 1 to AUXHFRCOEN in CMU_OSCENCMD. This explicit enabling is required when SWO
is used.

12.3.2 Oscillator Selection

12.3.2.1 Start-up Time

The different oscillators have different start-up times. For the RC oscillators, the start-up time is fixed,
but both the LFXO and the HFXO have configurable start-up time. At the end of the start-up time a ready
flag is set to indicated that the start-up time has exceeded and that the clock is available. The low start-
up time values can be used for an external clock source of already high quality, while the higher start-up
times should be used when the clock signal is coming directly from a crystal. The startup time for HFXO
and LFXO can be set by configuring the HFXOTIMEOUT and LFXOTIMEOUT bitfields, respectively.
Both bitfields are located in CMU_CTRL. For HFXO it is also possible to enable a glitch detection filter
by setting HFXOGLITCHDETEN in CMU_CTRL. The glitch detector will reset the start-up counter if a
glitch is detected, making the start-up process start over again.

There are individual bits for each oscillator indicating the status of the oscillator:

» ENABLED - Indicates that the oscillator is enabled
* READY - Start-up time is exceeded
« SELECTED - Start-up time is exceeded and oscillator is chosen as clock source

These status bits are located in the CMU_STATUS register.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

-_ N ®
E A F ...the world's most energy friendly wireless MCUs

12.3.2.2 Switching Clock Source

The HFRCO oscillator is a low energy oscillator with extremely short wake-up time. Therefore, this
oscillator is always chosen by hardware as the clock source for HFCLK when the device starts up (e.g.
after reset and after waking up from EM2 and EM3). After reset, the HFRCO frequency is 14 MHz.

Software can switch between the different clock sources at run-time. E.g., when the HFRCO is the
clock source, software can switch to HFXO by writing the field HFCLKSEL in the CMU_CMD command
register. See Figure 12.2 (p. 171) for a description of the sequence of events for this specific operation.

Note
It is important first to enable the HFXO since switching to a disabled oscillator will effectively

stop HFCLK and only a reset can recover the system.

During the start-up period HFCLK will stop since the oscillator driving it is not ready. This effectively
stalls the Core Modules and the High-Frequency Peripherals. It is possible to avoid this by first enabling
the HFXO and then wait for the oscillator to become ready before switching the clock source. This way,
the system continues to run on the HFRCO until the HFXO has timed out and provides a reliable clock.
This sequence of events is shown in Figure 12.3 (p. 172) .

A separate flag is set when the oscillator is ready. This flag can also be configured to generate an
interrupt.

Figure 12.2. CMU Switching from HFRCO to HFXO before HFXO is ready

cmu_cmp.Hrotkse. < : 00 : 0z X / 00 I

o | cMU_oscENcMD.HFRCOEN j : :

£ I

£ :

E | CMU_OSCENCMDHFRCODIS _: : : : : { |

5] T T T T T 7 b T

CMU_OSCENCMD.HFXOEN m o
CMU_OSCENCMD.HFXODIS / : oo
CMU_STATUSHFRCORDY [/ : Lo
CMU_STATUS HFRCOBNS [f B o

” CMU_STATUS HFRCOSEL | f : .

2 :

g ;

@ CMU_STATUS. HFXORDY /] |
CMU_STATUS HFXOENS / |
CMU_STATUSHFXOSEL : : : :] / |

HFCLK I i [I /
. f
£ HFRCO
2
3 :
HFXO : : ““““““““"“L/J““UUUUUU |—| |—| l—i U l—[l—l l—l l—l I—

HFXO time- out period

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

Figure 12.3. CMU Switching from HFRCO to HFXO after HFXO is ready

02 X © 00

CMU_CMD.HFCLKSEL

CMU_OSCENCMD.HFRCOEN

CMU_OSCENCMD.HFRCODIS

CMU_OSCENCMD.HFXOEN

CMU_OSCENCMD.HFXODIS

command

CMU_STATUS HFRCORDY |

CMU_STATUS.HFRCOENS |

CMU_STATUS. HFRCOSEL |

status

CMU_STATUS.HFXORDY

I
: S]
| |
wex L L L LT L L L L WL
o Janinhhigipigipigipigigigipinipgipt

Ly HFXO time- out periad -~

CMU_STATUS HFXOENS : : : |

CMU_STATUS. HFXOSEL

e e e e S

clocks

Switching clock source for LFACLK and LFBCLK is done by setting the LFA and LFB fields in
CMU_LFCLKSEL. To ensure no stalls in the Low Energy Peripherals, the clock source should be ready
before switching to it.

Note
To save energy, remember to turn off all oscillators not in use.

12.3.3 Oscillator Configuration

12.3.3.1 HFXO and LFXO

The crystal oscillators are by default configured to ensure safe startup and operation of the most common
crystals. In order to optimize startup margin, startup time and power consumption for a given crystal, it is
possible to adjust the gain in the oscillator. HFXO gain can be increased by setting HFXOBOOST field in
CMU_CTRL, LFXO gain can be increased by setting LFXOBOOST field in CMU_CTRL. It is important
that the boost settings, along with the crystal load capacitors are matched to the crystals in use. Correct
values for these parameters can be found using the energyAware Designer.

The HFXO crystal is connected to the HFXTAL_N/HFXTAL_P pins as shown in Figure 12.4 (p. 172)

Figure 12.4. HFXO Pin Connection

HFXTAL_N

HFXTAL_P

I EZR32

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

Similarly, the LFXO crystal is connected to the LFXTAL_N/LFXTAL_P pins as shown in Figure 12.5 (p.
173)

Figure 12.5. LFXO Pin Connection

LFXTAL_N

LFXTAL_P
32.768kHz

—l
EZR32

It is possible to connect an external clock source to HFXTAL_N/LFXTAL_N pin of the HFXO or LFXO
oscillator. By configuring the HFXOMODE/LFXOMODE fields in CMU_CTRL, the HFXO/LFXO can be
bypassed.

12.3.3.2 HFRCO, LFRCO and AUXHFRCO

It is possible to calibrate the HFRCO, LFRCO and AUXHFRCO to achieve higher accuracy (see the
device datasheets for details on accuracy). The frequency is adjusted by changing the TUNING fields
in CMU_HFRCOCTRL/CMU_LFRCOCTRL/CMU_AUXHFRCOCTRL. Changing to a higher value will
result in a higher frequency. Please refer to the datasheet for stepsize details.

The HFRCO and AUXHFRCO can be set to one of several different frequency bands from 1 MHz to 28
MHz by setting the BAND field in CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL.The HFRCO and
AUXHFRCO frequency bands are calibrated during production test, and the production tested calibration
values can be read from the Device Information (DI) page. The DI page contains a separate tuning value
for each frequency band. During reset, HFRCO and AUXHFRCO tuning values are set to the production
calibrated values for the 14 MHz band, which is the default frequency band. When changing to a different
HFRCO or AUXHFRCO band, make sure to also update the tuning value.

The LFRCO and is also calibrated in production and its TUNING value is set to the correct value during
reset.

The CMU has built-in HW support to efficiently calibrate the RC oscillators at run-time, see Figure 12.6 (p.
174) The concept is to select a reference and compare the RC frequency with the reference frequency.
When the calibration circuit is started, one down-counter running on a selectable clock (DOWNSEL in
CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in CMU_CALCTRL) are
started simultaneously. The top value for the down-counter must be written to CMU_CALCNT before
calibration is started. The smallest value that can be written to the CMU_CALCNT is 1. The down-counter
counts for CMU_CALCNT+1 cycles. When the down-counter has reached 0, the up-counter is sampled
and the CALRDY interrupt flag is set. If CONT in CMU_CALCTRL is cleared, the counters are stopped
at this point. If continuous mode is selected by setting CONT in CMU_CALCTRL the down-counter
reloads the top value and continues counting and the up-counter restarts from 0. Software can then
read out the sampled up-counter value from CMU_CALCNT. Then it is easy to find the ratio between
the reference and the oscillator subject to the calibration. Overflows of the up-counter will not occur. If
the up-counter reaches its top value before the down counter reaches 0, the top counter stays at its top
value. Calibration can be stopped by writing CALSTOP in CMU_CMD. With this HW support, it is simple
to write efficient calibration algorithms in software.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

(]
EZR ...the world's most energy friendly wireless MCUs

Figure 12.6. HW-support for RC Oscillator Calibration

DOWNCLK Domain

Reload down- counter with
top value in continouous

CMU_CALCTRL.DOWNSEL mode
AUXHFRCO
HFRCO
LFRCO DowNeLC 20- bit down- counter (<& TOP - gﬁs};{lgz#‘z;ﬂ?g
HFXO A starting calibration.
LFXO

(Default) HFCLK

Take snapshot of up- counter
in up- counter bufffer. If in
continouous mode, restart
up- counter from 0.

UPCLK Domain

CMU_CALCTRL.REFSEL
AUXHFRCO

HFRCO

UPCLK \] 20- bit up- counter
LFRCO 20- bit up- counter | buffer
HFXO

Y

LFXO

HFCLK Domain [[sme |

CMU_CALCNT Set CMU_IF.CALRDY

The counter operation for single and continuous mode are shown in Figure 12.7 (p. 174) and
Figure 12.8 (p. 174) respectively.

Figure 12.7. Single Calibration (CONT=0)

Up- counter sampled and CALRDY
interrupt flag set.
Ssampled value available in

CMU_CALCNT.

!

Up- counter

Down- counter

Calibration Started Calibration Stopped
(counters stopped)

Figure 12.8. Continuous Calibration (CONT=1)

Up- counter sampled and CALRDY Up- counter sampled and CALRDY
interrupt flag set.

interrupt flag set.
sampled value available in

Sampled value available in
CMU_CALCNT. CMU_CALCNT.
Y Y
Up- counter
0
TOP

Down- counter

Calibration Started

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

12.3.4 Configuration For Operating Frequencies

The HFXO is capable of driving crystals up to 48 MHz, which allows the EZR32 to run at up to this
frequency. Different frequencies have different requirements as shown in Table 12.1 (p. 175). Before
going to a high frequency, make sure the registers in the table have the correct values. When going
down in frequency, make sure to keep the registers at the values required by the higher frequency until
after the switch has been done.

Table 12.1. Configuration For Operating Frequencies

16 MHz WSO0/WSO0SCBTP /WS1/ | - BOOSTUPTO32MHZ
WS1SCBTP / WS2 / (default value)
WS2SCBTP

24 MHz WS1/WS1SCBTP /WS2/ BOOSTUPTO32MHZ
WS2SCBTP (default value)

32 MHz WS1/WS1SCBTP /WS2/ BOOSTUPTO32MHZ
WS2SCBTP (default value)

48 MHz WS2 / WS2SCBTP BOOSTABOVE32MHZ

MODE in MSC_READCTRL makes sure the flash is able to operate at the given frequencies
by inserting waitstates for flash accesses. HFXOBUFCUR in CMU_CTRL should be set to
BOOSTABOVE32MHZ when operating above 32 MHz. When operating at 32 MHz or below, the default
value (BOOSTUPTO32MHZ) should be used. HFLE in CMU_CTRL is only required for frequencies
above 24 MHz, and ensures correct operation of LE peripherals. The CMU_CTRL_HFLE is or'ed with
HFCORECLKLEDIV in CMU_HFCORECLKDIV, so setting either of this bits will reduce the the frequency
of CMU_HFCORECLKLEDIV2.

12.3.5 Output Clock on a Pin

It is possible to configure the CMU to output clocks on two pins. This clock selection is done using
CLKOUTSELO and CLKOUTSEL1 fields in CMU_CTRL. The output pins must be configured in the
CMU_ROUTE register.

 LFRCO, LFXO, HFCLK or the qualified clock from any of the oscillators can be output on one pin
(CMU_OUT1). A qualified clock will not have any glitches or skewed duty-cycle during startup. For
LFXO and HFXO you need to configure LFXOTIMEOUT and HFXOTIMEOUT in CMU_CTRL correctly
to guarantee a qualified clock.

* HFRCO, HFXO, HFCLK/2, HFCLK/4, HFCLK/8, HFCLK/16, ULFRCO or AUXHFRCO can be output
on another pin (CMU_OUTO)

Note that HFXO and HFRCO clock outputs to pin can be unstable after startup and should not be output
on a pin before HFXORDY/HFRCORDY is set high in CMU_STATUS.

12.3.6 Protection

It is possible to lock the control- and command registers to prevent unintended software writes to critical
clock settings. This is controlled by the CMU_LOCK register.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

12.4 Register Map

The offset register address is relative to the registers base address.

0x000 CMU_CTRL RW CMU Control Register

0x004 CMU_HFCORECLKDIV RW High Frequency Core Clock Division Register
0x008 CMU_HFPERCLKDIV RW High Frequency Peripheral Clock Division Register
0x00C CMU_HFRCOCTRL RW HFRCO Control Register

0x010 CMU_LFRCOCTRL RW LFRCO Control Register

0x014 CMU_AUXHFRCOCTRL RW AUXHFRCO Control Register

0x018 CMU_CALCTRL RW Calibration Control Register

0x01C CMU_CALCNT RWH Calibration Counter Register

0x020 CMU_OSCENCMD w1 Oscillator Enable/Disable Command Register
0x024 CMU_CMD w1 Command Register

0x028 CMU_LFCLKSEL RW Low Frequency Clock Select Register

0x02C CMU_STATUS R Status Register

0x030 CMU_IF R Interrupt Flag Register

0x034 CMU_IFS w1 Interrupt Flag Set Register

0x038 CMU_IFC w1 Interrupt Flag Clear Register

0x03C CMU_IEN RW Interrupt Enable Register

0x040 CMU_HFCORECLKENO RW High Frequency Core Clock Enable Register 0
0x044 CMU_HFPERCLKENO RW High Frequency Peripheral Clock Enable Register 0
0x050 CMU_SYNCBUSY R Synchronization Busy Register

0x054 CMU_FREEZE RW Freeze Register

0x058 CMU_LFACLKENO RW Low Frequency A Clock Enable Register 0 (Async Reg)
0x060 CMU_LFBCLKENO RW Low Frequency B Clock Enable Register 0 (Async Reg)
0x068 CMU_LFAPRESCO RW Low Frequency A Prescaler Register 0 (Async Reg)
0x070 CMU_LFBPRESCO RW Low Frequency B Prescaler Register 0 (Async Reg)
0x078 CMU_PCNTCTRL RW PCNT Control Register

0x080 CMU_ROUTE RW 1/0 Routing Register

0x084 CMU_LOCK RW Configuration Lock Register

12.5 Register Description

12.5.1 CMU_CTRL - CMU Control Register

oo |&[g|ala|s|gula]a]a]a]=]gals]aa|s]|gs]a]a]o]|e|~|o|w|c|o]|a]|]0
Reset = R R = - R R? o| ¥ ? R
o o o o o o o o o
Access = = = = s |2 = 2 2 = 2| 2 2 2
& x 4 x ¥ |z 4 r x | = 4 4

i
= o = 14 = W
« p 2 > |3 > Ho4 2 Tl 2 0 a
w 35 w w o) [} = o o O Ia) O o o
Name 3 0 0 o0 u L 9 o) 4 | 5 Q >
z Q 5 5 = |3 r g 3 = | 3 Q S
T a e} 0 E |0 o ol x E El O Q X
e 4 <) < L x|] J| x X [
3 } E T T w] E 0] i T T

O O L — T Q I
L
I

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

il Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

30 HFLE 0 RW High-Frequency LE Interface

Set to allow access to LE peripherals when running at frequencies higher than 24 MHz. Or'ed with
CMU_HFCORECLKDIV_HFCORECLKLEDIV to reduce the frequency of CMU_HFCORECLKLEDIV2.

29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
28 DBGCLK 0 RW Debug Clock

Select clock used for the debug system.

Value Mode Description

0 AUXHFRCO AUXHFRCO is the debug clock.

1 HFCLK The system clock is the debug clock.
27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
26:23 CLKOUTSEL1 0x0 RW Clock Output Select 1

Controls the clock output multiplexer. To actually output on the pin, set CLKOUT1PEN in CMU_ROUTE.

Value Mode Description
0 LFRCO LFRCO (directly from oscillator).
1 LFXO LFXO (directly from oscillator).
2 HFCLK HFCLK (undivided).
3 LFXOQ LFXO (qualified).
4 HFXO0Q HFXO (qualified).
5 LFRCOQ LFRCO (qualified).
6 HFRCOQ HFRCO (qualified).
7 AUXHFRCOQ AUXHFRCO (qualified).
22:20 CLKOUTSELO 0x0 RW Clock Output Select 0

Controls the clock output multiplexer. To actually output on the pin, set CLKOUTOPEN in CMU_ROUTE.

Value Mode Description

0 HFRCO HFRCO (directly from oscillator).

1 HFXO HFXO (directly from oscillator).

2 HFCLK2 HFCLK/2.

3 HFCLK4 HFCLK/4.

4 HFCLK8 HFCLK/8.

5 HFCLK16 HFCLK/16.

6 ULFRCO ULFRCO (directly from oscillator).

7 AUXHFRCO AUXHFRCO (directly from oscillator).
19:18 LFXOTIMEOUT 0x3 RW LFXO Timeout

Configures the start-up delay for LFXO.

Value Mode Description
0 8CYCLES Timeout period of 8 cycles.
1 1KCYCLES Timeout period of 1024 cycles.
2 16KCYCLES Timeout period of 16384 cycles.
3 32KCYCLES Timeout period of 32768 cycles.
17 LFXOBUFCUR 0 RW LFXO Boost Buffer Current

This value has been updated to the correct level during calibration and should not be changed.

16:14 HFCLKDIV 0x0 RW
Use to divide HFCLK frequency by (HFCLKDIV + 1).

HFCLK Division

13 LFXOBOOST 1 RW
Adjusts start-up boost current for LFXO.

LFXO Start-up Boost Current

Value Mode Description
0 7O0PCENT 70 %.
1 100PCENT 100 %.

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

12:11 LFXOMODE 0x0 RW LFXO Mode

Set this to configure the external source for the LFXO. The oscillator setting takes effect when 1 is written to LFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to LFXODIS in CMU_OSCENCMD.

Value Mode Description
0 XTAL 32.768 kHz crystal oscillator.
1 BUFEXTCLK An AC coupled buffer is coupled in series with LFXTAL_N pin, suitable for external
sinus wave (32.768 kHz).
2 DIGEXTCLK Digital external clock on LFXTAL_N pin. Oscillator is effectively bypassed.
10:9 HFXOTIMEOUT 0x3 RW HFXO Timeout

Configures the start-up delay for HFXO.

Value Mode Description

0 8CYCLES Timeout period of 8 cycles.

1 256CYCLES Timeout period of 256 cycles.

2 1KCYCLES Timeout period of 1024 cycles.

3 16KCYCLES Timeout period of 16384 cycles.
8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 HFXOGLITCHDETEN 0 RW HFXO Glitch Detector Enable

This bit enables the glitch detector which is active as long as the start-up ripple-counter is counting. A detected glitch will reset the
ripple-counter effectively increasing the start-up time. Once the ripple-counter has timed-out, glitches will not be detected.

6:5 HFXOBUFCUR Ox1 RW HFXO Boost Buffer Current

The current level in the HFXO buffer should be set to default value when operating on 32 MHz or below. When operating on
frequencies above 32 MHz, the buffer current level should be set to 3.

Value Mode Description
1 BOOSTUPTO32MHZ Boost Buffer Current level when HFXO is below or equal to 32 MHz.
3 BOOSTABOVE32MHZ Boost Buffer Current Level when HFXO is above 32 MHz.
4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2 HFXOBOOST 0x3 RW HFXO Start-up Boost Current
Used to adjust start-up boost current for HFXO.
Value Mode Description
0 50PCENT 50 %.
1 70PCENT 70 %.
2 80PCENT 80 %.
3 100PCENT 100 % (default).
1:0 HFXOMODE 0x0 RW HFXO Mode

Set this to configure the external source for the HFXO. The oscillator setting takes effect when 1 is written to HFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to HFXODIS in CMU_OSCENCMD.

Value Mode Description
0 XTAL 4-48 MHz crystal oscillator.
1 BUFEXTCLK An AC coupled buffer is coupled in series with HFXTAL_N, suitable for external sine

wave (4-48 MHz). The sine wave should have a minimum of 200 mV peak to peak.

2 DIGEXTCLK Digital external clock on HFXTAL_N pin. Oscillator is effectively bypassed.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friend

ly wireless MCUs

12.5.2 CMU_HFCORECLKDIV - High Frequency Core Clock Division

Register
Bit Position
0x004 S| |Q|J|QQ|I|IQ [V |J|R|ISE|S|S |8 |3 |QY¥ |2 |S|o|o|~|ojw | |0 ~|d|0
Reset 2
o
Access 5 5
>
3 3
w
2 X
Name é g
x
: :
2 T
T
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8 HFCORECLKLEDIV 0 RW Additional Division Factor For HFCORECLKLE
Additional division factor for HFCORECLKLE. When running at frequencies higher than 24 MHz, this must be set to DIV4.
Value Mode Description
0 DIv2 Valid for frequencies 24 MHz and lower.
1 DIvV4 Must be used when HFCORECLK may go above 24 MHz.
74 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3.0 HFCORECLKDIV 0x0 RW HFCORECLK Divider
Specifies the clock divider for HFCORECLK.
Value Mode Description
0 HFCLK HFCORECLK = HFCLK.
1 HFCLK2 HFCORECLK = HFCLK/2.
2 HFCLK4 HFCORECLK = HFCLK/4.
3 HFCLKS8 HFCORECLK = HFCLK/8.
4 HFCLK16 HFCORECLK = HFCLK/16.
5 HFCLK32 HFCORECLK = HFCLK/32.
6 HFCLK64 HFCORECLK = HFCLK/64.
7 HFCLK128 HFCORECLK = HFCLK/128.
8 HFCLK256 HFCORECLK = HFCLK/256.
9 HFCLK512 HFCORECLK = HFCLK/512.

12.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division

Register
Bit Position
0x008 S|3 || |J|QQ (I |IQ |V |J|R|ISE|S|S |8 |3 |QY¥ | |S|o|o|~|ow | |0 ~|d|0
Reset - =
o

Access E E
z >
u g

Name a x
4 O
]} @
o w
< i
T I

Bit Name Reset Access Description

31:9 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

— F @
— A ...the world's most energy friendly wireless MCUs
8 HFPERCLKEN 1 RW HFPERCLK Enable

Set to enable the HFPERCLK.

7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3.0 HFPERCLKDIV 0x0 RW HFPERCLK Divider

Specifies the clock divider for the HFPERCLK.

Value Mode Description

0 HFCLK HFPERCLK = HFCLK.

1 HFCLK2 HFPERCLK = HFCLK/2.

2 HFCLK4 HFPERCLK = HFCLK/4.

3 HFCLKS HFPERCLK = HFCLK/8.

4 HFCLK16 HFPERCLK = HFCLK/16.

5 HFCLK32 HFPERCLK = HFCLK/32.

6 HFCLK64 HFPERCLK = HFCLK/64.

7 HFCLK128 HFPERCLK = HFCLK/128.

8 HFCLK256 HFPERCLK = HFCLK/256.

9 HFCLK512 HFPERCLK = HFCLK/512.

12.5.4 CMU_HFRCOCTRL - HFRCO Control Register
ooc|=[slele]slgalz|r|s|s]alalals|a|a]s|gs]=]e]o]a]~ [ofo]e |o]~]-]|o
Reset % < °>C§

IS < IS

Access 5 5 5
>

Q

Name 5 % z

o < Z

=) @ 2

2 [=

31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16:12 SUDELAY 0x00 RW HFRCO Start-up Delay

Always write this field to 0.
Ll Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 BAND 0x3 RW HFRCO Band Select
Write this field to set the frequency band in which the HFRCO is to operate. When changing this setting there will be no glitches on
the HFRCO output, hence it is safe to change this setting even while the system is running on the HFRCO. To ensure an accurate
frequency, the HFTUNING value should also be written when changing the frequency band. The calibrated tuning value for the
different bands can be read from the Device Information page.
Value Mode Description
0 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
1 7TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
2 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
3 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
4 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
5 28MHZ 28 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7:0 TUNING 0x80 RW HFRCO Tuning Value

Writing this field adjusts the HFRCO frequency (the higher value, the higher frequency). This field is updated with the production
calibrated value for the 14 MHz band during reset, and the reset value might therefore vary between devices.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

12.5.5 CMU_LFRCOCTRL - LFRCO Control Register

Offset Bit Position
0x010 SI3IRXIQIKIQQII|Q|V[J[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow || mo|n|-d]|o0
o
Reset 3
o
Access E
0}
Name z
z
=)
'_
Bit NET] Reset Access Description
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

6:0 TUNING 0x40 RW LFRCO Tuning Value

Writing this field adjusts the LFRCO frequency (the higher value, the higher frequency). This field is updated with the production
calibrated value during reset, and the reset value might therefore vary between devices.

12.5.6 CMU_AUXHFRCOCTRL - AUXHFRCO Control Register

Offset Bit Position
N R I S R R R R R E R R A R A N A e R R R R R S
o
Reset g g
Access E E
Q
Name % z
& 5
|_
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 BAND 0x0 RW AUXHFRCO Band Select
Write this field to set the frequency band in which the AUXHFRCO is to operate. When changing this setting there will be no glitches
on the AUXHFRCO output, hence it is safe to change this setting even while the system is using the AUXHFRCO. To ensure an
accurate frequency, the AUXTUNING value should also be written when changing the frequency band. The calibrated tuning value
for the different bands can be read from the Device Information page. Flash erase and write use this clock. If it is changed to another
value than the default, MSC_TIMEBASE must also be configured to ensure correct flash erase and write operation.
Value Mode Description
0 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
1 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
2 TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
3 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
6 28MHZ 28 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7:0 TUNING 0x80 RW AUXHFRCO Tuning Value

Writing this field adjusts the AUXHFRCO frequency (the higher value, the higher frequency).This field is updated with the production
calibrated value during reset, and the reset value might therefore vary between devices.

www.silabs.com

01-13 - EZR32LG Family - d0333_Rev0.90

EZR

...the world's most energy friendly wireless MCUs

12.5.7 CMU_CALCTRL - Calibration Control Register

Offset Bit Position
0x018 S8 |||V IV |J|IS3 |5 |82 |3 (23|23 | o/ w |« S
Reset = =
o o
Access 5 5 5
o
- —
Name z 2 '(-})J
O s 2
O 3 g
a
Bit Name Reset Access Description
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CONT 0 RW Continuous Calibration
Set this bit to enable continuous calibration.
5:3 DOWNSEL 0x0 RW Calibration Down-counter Select
Selects clock source for the calibration down-counter.
Value Mode Description
0 HFCLK Select HFCLK for down-counter.
1 HFXO Select HFXO for down-counter.
2 LFXO Select LFXO for down-counter.
3 HFRCO Select HFRCO for down-counter.
4 LFRCO Select LFRCO for down-counter.
5 AUXHFRCO Select AUXHFRCO for down-counter.
2:0 UPSEL 0x0 RW Calibration Up-counter Select

Selects clock source for the calibration up-counter.

Value Mode Description

0 HFXO Select HFXO as up-counter.

1 LFXO Select LFXO as up-counter.

2 HFRCO Select HFRCO as up-counter.

3 LFRCO Select LFRCO as up-counter.

4 AUXHFRCO Select AUXHFRCO as up-counter.

12.5.8 CMU_CALCNT - Calibration Counter Register

Offset

Bit Position

0x01C 5|87 |QQ|IJI|Q(J|J |3 |5 |9 |a|3 |83 |28]|@ ©w S|~ |
o
o

Reset 3
o
x
o
I

Access =
aq
=

Name o
-
<
o

Bit NE] Reset Access Description

31:20 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

www.silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset

19:0 CALCNT 0x00000

Access

RWH

Description

Calibration Counter

Write top value before calibration. Read calibration result from this register when Calibration Ready flag has been set.

12.5.9 CMU_OSCENCMD - Oscillator Enable/Disable Command Register

Offset Bit Position
0x020 S |3 |J|QQ|I|IQ(V|J|RIE|S|S |8 |3 [QY¥ | |S|o|o|~|ow | |0 ~|d|0
Reset o|lo|o|olo|o|o|o|o|o
Access SEEIEEIEIEIE =
oz |25 %) E wl|lz|2 |5
O e N Y T z|L Tl e
o 5[5 x 5 €
<
Bit Name Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9 LFXODIS 0 W1 LFXO Disable
Disables the LFXO. LFXOEN has higher priority if written simultaneously.
8 LFXOEN 0 W1 LFXO Enable
Enables the LFXO.
7 LFRCODIS 0 W1 LFRCO Disable
Disables the LFRCO. LFRCOEN has higher priority if written simultaneously.
6 LFRCOEN 0 W1 LFRCO Enable
Enables the LFRCO.
5 AUXHFRCODIS 0 w1 AUXHFRCO Disable
Disables the AUXHFRCO. AUXHFRCOEN has higher priority if written simultaneously. WARNING: Do not disable this clock during
a flash erase/write operation.
4 AUXHFRCOEN 0 W1 AUXHFRCO Enable
Enables the AUXHFRCO.
3 HFXODIS 0 W1 HFXO Disable
Disables the HFXO. HFXOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRXO if this oscillator
is selected as the source for HFCLK.
2 HFXOEN 0 W1 HFXO Enable
Enables the HFXO.
1 HFRCODIS 0 W1 HFRCO Disable
Disables the HFRCO. HFRCOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRCO if this oscillator
is selected as the source for HFCLK.
0 HFRCOEN 0 w1 HFRCO Enable

Enables the HFRCO.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

12.5.10 CMU_CMD - Command Register

Bit Position

0x024 SI3IRXIQ|IKIQQII]|V [J |8 |5 |2 |23 |G8Y |2 |S|o|o|~|ow |t |mo|n|d]|o
Reset g o |o g
Access g E g g

o - -

) 3l w
Name ot EE Q

o} 910 i

2 |3|3| &

? O T

o]
Bit INET S Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
75 USBCCLKSEL 0x0 w1 USB Core Clock Select

Selects the clock for HFCORECLKsgc. The status register is updated when the clock switch has taken effect.

Value Mode Description
1 HFCLKNODIV Select HFCLK (undivided) as HFCORECLKsgc.
2 LFXO Select LFXO as HFCORECLKsgc.
3 LFRCO Select LFRCO as HFCORECLKsgc.
4 CALSTOP 0 w1 Calibration Stop
Stops the calibration counters.
3 CALSTART 0 w1 Calibration Start

Starts the calibration, effectively loading the CMU_CALCNT into the down-counter and start decrementing.

2:0 HFCLKSEL 0x0 w1 HFCLK Select

Selects the clock source for HFCLK. Note that selecting an oscillator that is disabled will cause the system clock to stop. Check the
status register and confirm that oscillator is ready before switching.

Value Mode Description

1 HFRCO Select HFRCO as HFCLK.
2 HFXO Select HFXO as HFCLK.
3 LFRCO Select LFRCO as HFCLK.
4 LFXO Select LFXO as HFCLK.

12.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Register

Offset Bit Position

0x028 S8 |||V Q|II|Q(J|J|RIS3 |5 |92 |3 |88 |3 |8 |o|= o w S| ||

Reset o p: %

o o

Access 5 5 5

Name o u 0 <
i g &] 8

Bit Name Reset Access Description

31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

20 LFBE 0 RW Clock Select for LFB Extended

This bit redefines the meaning of the LFB field.

Mode
0 DISABLED

Value Description

LFBCLK is disabled (when LFB = DISABLED).

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

Value Mode Description

1 ULFRCO ULFRCO selected as LFBCLK (when LFB = DISABLED).
19:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 LFAE 0 RW Clock Select for LFA Extended

This bit redefines the meaning of the LFA field.

Value Mode Description

0 DISABLED LFACLK is disabled (when LFA = DISABLED).

1 ULFRCO ULFRCO selected as LFACLK (when LFA = DISABLED).
15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2 LFB 0x1 RW Clock Select for LFB

Selects the clock source for LFBCLK.

LFB LFBE Mode Description

0 0 Disabled LFBCLK is disabled

1 0 LFRCO LFRCO selected as LFBCLK

2 0 LFXO LFXO selected as LFBCLK

3 0 HFCORECLKLEDIV2 HFCORECLK_ g divided by two is selected as

LFBCLK

0 1 ULFRCO ULFRCO selected as LFBCLK

1:0 LFA 0x1 RW Clock Select for LFA

Selects the clock source for LFACLK.

LFA LFAE Mode Description

0 0 Disabled LFACLK is disabled

1 0 LFRCO LFRCO selected as LFACLK

2 0 LFXO LFXO selected as LFACLK

3 0 HFCORECLKLEDIV2 HFCORECLK g divided by two is selected as
LFACLK

0 1 ULFRCO ULFRCO selected as LFACLK

12.5.12 CMU_STATUS - Status Register

Offset Bit Position

0x02C S8 |||V IV |J RIS |58 (2|3 g3 |d|S|o|o|~|ow|s|m|~|d]|o

Reset o o o o o| © o — o o o o| © o o o - —

Access 2 @ [xr || o @ o o @ X | o @ @ o o o
— _ > | wn
o | |o Al >
212125 28(d8|5/2|2/8%|8(5|2/|2]|z2

5181218188188 /28/8/85(2/8(3/8 3
FIL 2|22 (R|c|Q2|2|oloE|g|R[R|C|9
J|lo|Z |0 | |L|E|L |y |E|Ez || |E |
8'338 o BT I I e I B T 1 I IS i B B N - o
%) [%2] %) =) 2
5|2 |5 <

Bit Name Reset Access Description

31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

17 USBCLFRCOSEL 0 R USBC LFRCO Selected

LFRCO is selected (and active) as HFCORECLKyggc.-
16 USBCLFXOSEL 0 R USBC LFXO Selected
LFXO is selected (and active) as HFCORECLKysgc.
15 USBCHFCLKSEL 0 R USBC HFCLK Selected

HFCLK is selected (and active) as HFCORECLKysgc.

www.silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

14 CALBSY 0 R Calibration Busy

Calibration is on-going.

13 LFXOSEL 0 R LFXO Selected
LFXO is selected as HFCLK clock source.

12 LFRCOSEL 0 R LFRCO Selected
LFRCO is selected as HFCLK clock source.

11 HFXOSEL 0 R HFXO Selected
HFXO is selected as HFCLK clock source.

10 HFRCOSEL 1 R HFRCO Selected
HFRCO is selected as HFCLK clock source.

9 LFXORDY 0 R LFXO Ready

LFXO is enabled and start-up time has exceeded.

8 LFXOENS 0 R LFXO Enable Status
LFXO is enabled.

7 LFRCORDY 0 R LFRCO Ready

LFRCO is enabled and start-up time has exceeded.

6 LFRCOENS 0 R LFRCO Enable Status
LFRCO is enabled.

5 AUXHFRCORDY 0 R AUXHFRCO Ready
AUXHFRCO is enabled and start-up time has exceeded.

4 AUXHFRCOENS 0 R AUXHFRCO Enable Status
AUXHFRCO is enabled.

3 HFXORDY 0 R HFXO Ready

HFXO is enabled and start-up time has exceeded.

2 HFXOENS 0 R HFXO Enable Status
HFXO is enabled.

1 HFRCORDY 1 R HFRCO Ready

HFRCO is enabled and start-up time has exceeded.

0 HFRCOENS 1 R HFRCO Enable Status
HFRCO is enabled.

12.5.13 CMU_IF - Interrupt Flag Register

Offset Bit Position

0x030 5|8 |||V IQQ|II|Q(V|J RIS |58 (2|3 Qs |d|8|o|o|~|ow|s|m|n|d]|o
Reset o |lojlo|o|o|o|o |+
Access r|ooe ||| | x| o

Name

CALOF
CALRDY
AUXHFRCORDY
LFXORDY
LFRCORDY
HFXORDY
HFRCORDY

USBCHFCLKSEL

Bit Name Reset Access Description

31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

7 USBCHFCLKSEL 0 R USBC HFCLK Selected Interrupt Flag
Set when HFCLK is selected as HFCORECLKsgc.

6 CALOF 0 R Calibration Overflow Interrupt Flag

Set when calibration overflow has occurred

5 CALRDY 0 R Calibration Ready Interrupt Flag

Set when calibration is completed.

4 AUXHFRCORDY 0 R AUXHFRCO Ready Interrupt Flag
Set when AUXHFRCO is ready (start-up time exceeded).

3 LFXORDY 0 R LFXO Ready Interrupt Flag

Set when LFXO is ready (start-up time exceeded).

2 LFRCORDY 0 R LFRCO Ready Interrupt Flag

Set when LFRCO is ready (start-up time exceeded).

1 HFXORDY 0 R HFXO Ready Interrupt Flag
Set when HFXO is ready (start-up time exceeded).

0 HFRCORDY 1 R HFRCO Ready Interrupt Flag

Set when HFRCO is ready (start-up time exceeded).

12.5.14 CMU_IFS - Interrupt Flag Set Register

Offset Bit Position
003 |5 8|8 |k (88|38 |1|g|ga|n|ela|I (8|S0 |o |0 || o]0
Reset o |olo|o|o|o|o | o
Access EBEEEEEE
g é >1z1%15
Name é "9" é 3 2 % % %
I
=)
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 USBCHFCLKSEL 0 w1 USBC HFCLK Selected Interrupt Flag Set
Write to 1 to set the USBC HFCLK Selected Interrupt Flag.
6 CALOF 0 w1 Calibration Overflow Interrupt Flag Set
Write to 1 to set the Calibration Overflow Interrupt Flag.
5 CALRDY 0 w1 Calibration Ready Interrupt Flag Set
Write to 1 to set the Calibration Ready(completed) Interrupt Flag.
4 AUXHFRCORDY 0 W1 AUXHFRCO Ready Interrupt Flag Set
Write to 1 to set the AUXHFRCO Ready Interrupt Flag.
3 LFXORDY 0 w1 LFXO Ready Interrupt Flag Set
Write to 1 to set the LFXO Ready Interrupt Flag.
2 LFRCORDY 0 w1 LFRCO Ready Interrupt Flag Set
Write to 1 to set the LFRCO Ready Interrupt Flag.
1 HFXORDY 0 w1 HFXO Ready Interrupt Flag Set

Write to 1 to set the HFXO Ready Interrupt Flag.

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

0 HFRCORDY 0 w1

Write to 1 to set the HFRCO Ready Interrupt Flag.

HFRCO Ready Interrupt Flag Set

12.5.15 CMU_IFC - Interrupt Flag Clear Register

Offset Bit Position

008 |F |8 (%8|~ |€e|3|Q|N|I|R|g 2|59l 3oy ~e|w | v |o|a]alo

Reset o|ojo|o|o|o|o | o
- o - - - - f f

Access SRR EEEE
mt 5 >

>
n > || > |Aa > | a
w [a)

Name 5|02 3 elx|g|g
O |2 X sl9lc |8
LIS |E(RIQIX|8
8 é S |Y% T T
g <

Bit NETE) Reset Access Description

31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

7 USBCHFCLKSEL 0
Write to 1 to clear the USBC HFCLK Selected Interrupt Flag.

w1

USBC HFCLK Selected Interrupt Flag Clear

6 CALOF

Write to 1 to clear the Calibration Overflow Interrupt Flag.

0 w1

Calibration Overflow Interrupt Flag Clear

5 CALRDY

0

wi

Write to 1 to clear the Calibration Ready Interrupt Flag.

Calibration Ready Interrupt Flag Clear

4 AUXHFRCORDY 0 w1 AUXHFRCO Ready Interrupt Flag Clear
Write to 1 to clear the AUXHFRCO Ready Interrupt Flag.
3 LFXORDY 0 w1 LFXO Ready Interrupt Flag Clear

Write to 1 to clear the LFXO Ready Interrupt Flag.

2 LFRCORDY 0 wi

Write to 1 to clear the LFRCO Ready Interrupt Flag.

LFRCO Ready Interrupt Flag Clear

1 HFXORDY 0 w1

Write to 1 to clear the HFXO Ready Interrupt Flag.

HFXO Ready Interrupt Flag Clear

0 HFRCORDY 0 w1

Write to 1 to clear the HFRCO Ready Interrupt Flag.

HFRCO Ready Interrupt Flag Clear

12.5.16 CMU_IEN - Interrupt Enable Register

Offset Bit Position
0x03C SI3IRX|IQ|IXIQQII QN [F[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow s |m|n|-d]|o
Reset
= (22 (2|2 |2
Access r|xlx|x|x|& x
] a
> >
7] > | x| > > | a
XLOLQ o |a E E o
Name aglY x| |x|o o}
QI 2|z |2|o|Q]|0
o< TR x x x x
5 Ol |YL|E|E |
@D é 4 T
g <

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 USBCHFCLKSEL 0 RW USBC HFCLK Selected Interrupt Enable

Set to enable the USBC HFCLK Selected Interrupt.

6 CALOF 0 RW Calibration Overflow Interrupt Enable

Set to enable the Calibration Overflow Interrupt.

5 CALRDY 0 RW Calibration Ready Interrupt Enable

Set to enable the Calibration Ready Interrupt.

4 AUXHFRCORDY 0 RW AUXHFRCO Ready Interrupt Enable
Set to enable the AUXHFRCO Ready Interrupt.

3 LFXORDY 0 RW LFXO Ready Interrupt Enable
Set to enable the LFXO Ready Interrupt.

2 LFRCORDY 0 RW LFRCO Ready Interrupt Enable
Set to enable the LFRCO Ready Interrupt.

1 HFXORDY 0 RW HFXO Ready Interrupt Enable
Set to enable the HFXO Ready Interrupt.

0 HFRCORDY 0 RW HFRCO Ready Interrupt Enable
Set to enable the HFRCO Ready Interrupt.

12.5.17 CMU_HFCORECLKENO - High Frequency Core Clock Enable
Register 0

Offset Bit Position

R R RN R R S B R A A E B e A R N A R R R A S

Reset o | o

Access E E E E E

Name w3 2 alg
13|19 |< |0

Bit NETE) Reset Access Description

31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

4 LE 0 RW Low Energy Peripheral Interface Clock Enable

Set to enable the clock for LE. Interface used for bus access to Low Energy peripherals.

3 UsB 0 RW Universal Serial Bus Interface Clock Enable
Set to enable the clock for USB.

2 USBC 0 RW Universal Serial Bus Interface Core Clock Enable
Set to enable the clock for USBC.

1 AES 0 RW Advanced Encryption Standard Accelerator Clock Enable

Set to enable the clock for AES.

0 DMA 0 RW Direct Memory Access Controller Clock Enable
Set to enable the clock for DMA.

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

-_ N ®
E A F ...the world's most energy friendly wireless MCUs

12.5.18 CMU_HFPERCLKENO - High Frequency Peripheral Clock Enable
Register 0

oo |5 [g|alz|s|gela]a]s]a]c]gals]a]alz]|gs]a]a]o]|e|~|o|w]|]|o]|a]]0o
Reset
slgslel||o glelelelzelalelele|d
<I<IE|EIFE|IRP|PI3]3]58
-}
31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
17 DACO 0 RW Digital to Analog Converter 0 Clock Enable
Set to enable the clock for DACO.
16 ADCO 0 RW Analog to Digital Converter 0 Clock Enable
Set to enable the clock for ADCO.
15 PRS 0 RW Peripheral Reflex System Clock Enable
Set to enable the clock for PRS.
14 VCMP 0 RW Voltage Comparator Clock Enable
Set to enable the clock for VCMP.
13 GPIO 0 RW General purpose Input/Output Clock Enable
Set to enable the clock for GPIO.
12 12C1 0 RW 12C 1 Clock Enable
Set to enable the clock for I12C1.
11 12C0 0 RW I12C 0 Clock Enable
Set to enable the clock for 12CO0.
10 ACMP1 0 RW Analog Comparator 1 Clock Enable
Set to enable the clock for ACMPL1.
9 ACMPO 0 RW Analog Comparator 0 Clock Enable
Set to enable the clock for ACMPO.
8 TIMER3 0 RW Timer 3 Clock Enable
Set to enable the clock for TIMERS.
7 TIMER2 0 RW Timer 2 Clock Enable
Set to enable the clock for TIMER2.
6 TIMER1 0 RW Timer 1 Clock Enable
Set to enable the clock for TIMERL.
5 TIMERO 0 RW Timer 0 Clock Enable
Set to enable the clock for TIMERO.
4 UART1 0 RW Universal Asynchronous Receiver/Transmitter 1 Clock Enable
Set to enable the clock for UART1.
3 UARTO 0 RW Universal Asynchronous Receiver/Transmitter O Clock Enable
Set to enable the clock for UARTO.
2 USART2 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 2
Clock Enable

Set to enable the clock for USART2.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
1 USART1 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 1
Clock Enable
Set to enable the clock for USART1.
0 USARTRFO 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 0

Clock Enable

Set to enable the clock for USARTRFO.

12.5.19 CMU_SYNCBUSY - Synchronization Busy Register

Bit Position
0x050 S|8N |J|QYQ IV |J|RIgE 5|8 |8 |3 QY| |S|o|o|~|ow | |0 a|d]0
Reset o o o o
Access @ @ 24 @
o o o o
O b4 O =4
Name] u] w
o 3 x 3
o @) o @)
om m < <
L w [T L
— - — —
Bit Name Reset Access Description
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 LFBPRESCO 0 R Low Frequency B Prescaler 0 Busy
Used to check the synchronization status of CMU_LFBPRESCO.
Value Description
1 CMU_LFBPRESCO is busy synchronizing new value.
5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 LFBCLKENO 0 R Low Frequency B Clock Enable 0 Busy
Used to check the synchronization status of CMU_LFBCLKENO.
Value Description
0 CMU_LFBCLKENQO is ready for update.
1 CMU_LFBCLKENO is busy synchronizing new value.
3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2 LFAPRESCO 0 R Low Frequency A Prescaler 0 Busy
Used to check the synchronization status of CMU_LFAPRESCO.
Value Description
0 CMU_LFAPRESCO is ready for update.
1 CMU_LFAPRESCO is busy synchronizing new value.
! Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 LFACLKENO 0 R Low Frequency A Clock Enable 0 Busy

Used to check the synchronization status of CMU_LFACLKENO.

Value Description
0 CMU_LFACLKENO is ready for update.
1 CMU_LFACLKENO is busy synchronizing new value.

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

12.5.20 CMU_FREEZE - Freeze Register

Offset Bit Position

0x054 SI3IRXIQIKIQQII|Q|V[J[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow || mo|n|-d]|o0

Reset o

Access E
w
N
Ll

Name [Im]
@
('R
©
]
[

Bit NET] Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 REGFREEZE 0 RW Register Update Freeze

When set, the update of the Low Frequency clock control registers is postponed until this bit is cleared. Use this bit to update several

registers simultaneously.

Value Mode Description

0 UPDATE Each write access to a Low Frequency clock control register is updated into the Low
Frequency domain as soon as possible.

1 FREEZE The LE Clock Control registers are not updated with the new written value.

12.5.21 CMU_LFACLKENO - Low Frequency A Clock Enable Register 0

(Async Req)

Bit Position
0x058 S8V Q|II|Q(N|J |3 |5 |9 |a|3 |38 |d|S|o ||~ |omw N || o
Reset
Access 5 5 5
2|, |4
Name & Q1=
S |x | W
= 7
i L
o)
Bit Name Reset Access Description
31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2 LETIMERO 0 RW
Set to enable the clock for LETIMERO.

Low Energy Timer 0 Clock Enable

1 RTC 0 RW Real-Time Counter Clock Enable

Set to enable the clock for RTC.

0 LESENSE 0 RW
Set to enable the clock for LESENSE.

Low Energy Sensor Interface Clock Enable

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

12.5.22 CMU_LFBCLKENO - Low Frequency B Clock Enable Register 0

(Async Req)

Offset

Bit Position

0x060 S| || |J|QQ|I|I] |V |J|QIg&|5 |8 |83 |qy|=|S|~ w s |o | oo

Reset

Access 5 E
— o
E|E

Name x |
< | <
=) =]
]]
— -

Bit NET] Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 LEUART1 0 RW Low Energy UART 1 Clock Enable

Set to enable the clock for LEUART1.
0 LEUARTO 0 RW Low Energy UART 0 Clock Enable

Set to enable the clock for LEUARTO.

12.5.23 CMU_LFAPRESCO - Low Frequency A Prescaler Register 0 (Async

Reg)

Offset Bit Position

0x068 5|87 |IJI ||V |J |23 |5 |s|a|3 |38 |2 |28]|@ Wi |® |0

Reset S = R
o o o

Access E E E
2 3

Name 5 8 z
= x 4
= w
H 4

Bit Name Reset Access Description

31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

11:8 LETIMERO 0x0 RW Low Energy Timer O Prescaler

Configure Low Energy Timer O prescaler

Value Mode Description

0 DIV1 LFACLK| gTimero = LFACLK

1 DIV2 LFACLK| gTimero = LFACLK/2

2 DIV4 LFACLK, grimero = LFACLK/4

3 DIV8 LFACLK, g1imero = LFACLK/8

4 DIV16 LFACLK,| eTimero = LFACLK/16

5 DIV32 LFACLK| eTimero = LFACLK/32

6 DIV64 LFACLK, e1imero = LFACLK/64

7 DIV128 LFACLK| gTimero = LFACLK/128
8 DIV256 LFACLK, g1imMero = LFACLK/256
9 DIV512 LFACLK| g1imero = LFACLK/512
10 DIV1024 LFACLK, g1imero = LFACLK/1024
11 DIV2048 LFACLK, g1imero = LFACLK/2048
12 DIV4096 LFACLK| e1imero = LFACLK/4096

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

Value Mode Description

13 DIV8192 LFACLK, eTimero = LFACLK/8192

14 DIV16384 LFACLK| eimMER0 = LFACLK/16384

15 DIV32768 LFACLK| eTimMER0 = LFACLK/32768
74 RTC 0x0 RW Real-Time Counter Prescaler

Configure Real-Time Counter prescaler

Value Mode Description

0 DIV1 LFACLKgTc = LFACLK

1 DIV2 LFACLKRTc = LFACLK/2

2 DIV4 LFACLKRgrc = LFACLK/4

3 DIV8 LFACLKgrc = LFACLK/8

4 DIV16 LFACLKRTc = LFACLK/16

5 DIV32 LFACLKRTc = LFACLK/32

6 DIV64 LFACLKRTc = LFACLK/64

7 DIV128 LFACLKgrc = LFACLK/128

8 DIV256 LFACLKRTc = LFACLK/256

9 DIV512 LFACLKgTc = LFACLK/512

10 DIV1024 LFACLKRgtc = LFACLK/1024

11 DIV2048 LFACLKgrc = LFACLK/2048

12 DIV4096 LFACLKRTc = LFACLK/4096

13 DIV8192 LFACLKRTc = LFACLK/8192

14 DIV16384 LFACLKRgTc = LFACLK/16384

15 DIV32768 LFACLKRgrc = LFACLK/32768
3:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0 LESENSE 0x0 RW Low Energy Sensor Interface Prescaler

Configure Low Energy Sensor Interface prescaler

Value Mode Description

0 DIV1 LFACLK gsense = LFACLK
1 DIV2 LFACLK| gsense = LFACLK/2
2 DIV4 LFACLK, gsense = LFACLK/4
3 DIV8 LFACLK, gsense = LFACLK/8

12.5.24 CMU_LFBPRESCO - Low Frequency B Prescaler Register 0 (Async

ReQ)
Bit Position

0x070 S| |QIQ|J|RYQ IV |J|RIgE|5|g |8 |3 QY| |S|o|o|~|ow | |0 ~|d|0

Reset = =
o o

Access E 5
— o
= =

Name 14 14
< <
o) o)
w w
- -

Bit Name Reset Access Description

31.6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5:4 LEUART1 0x0 RW Low Energy UART 1 Prescaler

Configure Low Energy UART 1 prescaler

Value

Mode

Description

0

DIV1

LFBCLKLEUARTl = LFBCLK

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

...the world's most energy friendly wireless MCUs

Value Mode Description

1 DIV2 LFBCLK, guarT1 = LFBCLK/2

2 DIv4 LFBCLK gyarT1 = LFBCLK/4

3 DIV8 LFBCLK gyarT1 = LFBCLK/8
3:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0 LEUARTO 0x0 RW Low Energy UART O Prescaler

Configure Low Energy UART O prescaler

Value Mode Description

0 DIV1 LFBCLK| guarTo = LFBCLK

1 DIV2 LFBCLK| guarTo = LFBCLK/2
2 DIv4 LFBCLK_guarTo = LFBCLK/4
3 DIV8 LFBCLK, guarTo = LFBCLK/8

12.5.25 CMU_PCNTCTRL - PCNT Control Register

e GG EIEIE E R BN R B S R Rl B EY S R R E B R
Reset
Access 5 E E E 5 E
= zZ = Z = Z
AR
Name 5 = 5 5 5 3
0|08 |8
N - — [o =
ElzlE|lz|E |z
519169189
g | |a|*|g >
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 PCNT2CLKSEL 0 RW PCNT2 Clock Select
This bit controls which clock that is used for the PCNT.
Value Mode Description
0 LFACLK LFACLK is clocking PCNT2.
1 PCNT2S0 External pin PCNT2_S0 is clocking PCNTO.
4 PCNT2CLKEN 0 RW PCNT2 Clock Enable
This bit enables/disables the clock to the PCNT.
Value Description
0 PCNT2 is disabled.
1 PCNT2 is enabled.
3 PCNT1CLKSEL 0 RW PCNT1 Clock Select
This bit controls which clock that is used for the PCNT.
Value Mode Description
0 LFACLK LFACLK is clocking PCNTO.
1 PCNT1S0 External pin PCNT1_SO0 is clocking PCNTO.
2 PCNT1CLKEN 0 RW PCNT1 Clock Enable
This bit enables/disables the clock to the PCNT.
Value Description
0 PCNT1 is disabled.
1 PCNT1 is enabled.
1 PCNTOCLKSEL 0 RW PCNTO Clock Select

1-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

This bit controls which clock that is used for the PCNT.

Value Mode Description

0 LFACLK LFACLK is clocking PCNTO.

1 PCNTO0SO External pin PCNTO_SO is clocking PCNTO.
0 PCNTOCLKEN 0 RW PCNTO Clock Enable

This bit enables/disables the clock to the PCNT.

Value Description

0 PCNTO is disabled.

1 PCNTO is enabled.

12.5.26 CMU_ROUTE - I/O Routing Register

Bit Position
0x080 S|8N |J|QQ|I|IJ |V |J|QIg&|5 |8 |83 gy |=|S|@ w s |o | oo
Reset =
o
Access 5 5 5
z |z
P4] 1]
o) oo
Name = g
< > |2
8 2|2
- - —
o0
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4:2 LOCATION 0x0 RW I/O Location
Decides the location of the CMU 1/O pins.
Value Mode Description
0 LOCO Location O
1 LOC1 Location 1
2 LOC2 Location 2
1 CLKOUT1PEN 0 RW CLKOUT1 Pin Enable
When set, the CLKOUT1 pin is enabled.
0 CLKOUTOPEN 0 RW CLKOUTO Pin Enable

When set, the CLKOUTO pin is enabled.

12.5.27 CMU_LOCK - Configuration Lock Register

Offset Bit Position

0x084 S| IQIQ|IF|IQQII|QIV|R|QSI |58 |33Y|F|S|o|o|~|ojw | v |m ||
o
3

Reset IS
x
o
2

Access &
>

N g

ame ™
O
o]
-

www.silabs.com

01-13 - EZR32LG Family - d0333_Rev0.90

®
EZR ...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock Key

Write any other value than the unlock code to lock CMU_CTRL, CMU_HFCORECLKDIV,
CMU_HFPERCLKDIV, CMU_HFRCOCTRL, CMU_LFRCOCTRL, CMU_AUXHFRCOCTRL, CMU_OSCENCMD, CMU_CMD,
CMU_LFCLKSEL, CMU_HFCORECLKENO, CMU_HFPERCLKENO, CMU_LFACLKENO, CMU_LFBCLKENO, CMU_LFAPRESCO,
CMU_LFBPRESCO, and CMU_PCNTCTRL from editing. Write the unlock code to unlock. When reading the register, bit 0 is set
when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 CMU registers are unlocked.
LOCKED 1 CMU registers are locked.
Write Operation

LOCK 0 Lock CMU registers.
UNLOCK 0x580E Unlock CMU registers.

01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

13 WDOG - Watchdog Timer

What?

The WDOG (Watchdog Timer) resets the

system in case of a fault condition, and can
X @ be enabled in all energy modes as long as

the low frequency clock source is available.

Why?

If a software failure or external event renders
Counter value the MCU unresponsive, a Watchdog timeout

A Watchdog clear - System reset will reset the system to a known, safe state.
Timeout period How?
y '
y An enabled Watchdog Timer implements a
configurable timeout period. If the CPU fails
» Time to re-start the Watchdog Timer before it times

out, a full system reset will be triggered. The
Watchdog consumes insignificant power,
and allows the device to remain safely in low
energy modes for up to 256 seconds at a
time.

13.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase
application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or
by a software failure.

13.2 Features

» Clock input from selectable oscillators
* Internal 32.768 Hz RC oscillator
 Internal 1 kHz RC oscillator
» External 32.768 Hz XTAL oscillator
» Configurable timeout period from 9 to 256k watchdog clock cycles
* Individual selection to keep running or freeze when entering EM2 or EM3
» Selection to keep running or freeze when entering debug mode
» Selection to block the CPU from entering Energy Mode 4
» Selection to block the CMU from disabling the selected watchdog clock

13.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOG_CTRL. When enabled, the watchdog counts
up to the period value configured through the PERSEL field in WDOG_CTRL. If the watchdog timer is
not cleared to 0 (by writing a 1 to the CLEAR bit in WDOG_CMD) before the period is reached, the chip
is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The watchdog
can optionally be locked by writing the LOCK bit in WDOG_CTRL. Once locked, it cannot be disabled
or reconfigured by software.

The watchdog counter is reset when EN is reset.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

13.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL.
The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bitin WDOG_CTRL can be
written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start
the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOG_CTRL is used
to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

WDOG Timeout Equation

Trimeout = (2% 5RO + 1), (13.1)

where f is the frequency of the selected clock.
It is recommended to clear the watchdog first, if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKENQO, in addition to
the module clock.

Note
When changing the clock source for WDOG, the EN bit in WDOG_CTRL should be cleared.
In addition to this, the WDOG_SYNCBUSY value should be zero.

13.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This
configuration is done through the DEBUGRUN bit in WDOG_CTRL. When code execution is resumed,
the watchdog will continue counting where it left off.

13.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3.
The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in
WDOG_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is
running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference
between EMO and EM1. The watchdog does not run in EM4, and if EM4BLOCK in WDOG_CTRL is set,
the CPU is prevented from entering EM4.

Note
If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will
effectively prevent the CPU from entering EM3. When running from the ULFRCO, writing
the SWOSCBLOCK bit will prevent the CPU from entering EM4.

13.3.4 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to
the HFCORECLK, special considerations must be taken when accessing registers. Please refer to
Section 6.3 (p. 61) for a description on how to perform register accesses to Low Energy Peripherals.
note that clearing the EN bit in WDOG_CTRL will reset the WDOG module, which will halt any ongoing
register synchronization.

Note
Never write to the WDOG registers when it is disabled, except to enable it by setting
WDOG_CTRL_EN or when changing the clock source using WDOG_CTRL_CLKSEL.
Make sure that the enable is registered (i.e. WDOG_SYNCBUSY_CTRL goes low), before
writing other registers.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

13.4 Register Map

...the world's most energy friendly wireless MCUs

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 WDOG_CTRL RW Control Register

0x004 WDOG_CMD w1 Command Register

0x008 WDOG_SYNCBUSY R Synchronization Busy Register

13.5 Register Description

13.5.1 WDOG_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 6.3 (p. 61) .

Bit Position
0x000 S|8N |J|QYQ (I (V|J|RIgE|5|g |83 QY| |S|o|o|~|ow | |0 a|d0
Reset Q L °
o o
Access 5 5 E 5 5 E z E
N
85 z|z|5
- |
N
Name 3 3 555122 8|z
X o Olm |0 |2 g |5 W
_|] N[22 | >
O o ol = (W |w
2| W a]
[0
Bit NE] Reset Access Description
31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:12 CLKSEL 0x0 RW Watchdog Clock Select
Selects the WDOG oscillator, i.e. the clock on which the watchdog will run.
Value Mode Description
0 ULFRCO ULFRCO
1 LFRCO LFRCO
2 LFXO LFXO
11:8 PERSEL OxF RW Watchdog Timeout Period Select
Select watchdog timeout period.
Value Description
0 Timeout period of 9 watchdog clock cycles.
1 Timeout period of 17 watchdog clock cycles.
2 Timeout period of 33 watchdog clock cycles.
3 Timeout period of 65 watchdog clock cycles.
4 Timeout period of 129 watchdog clock cycles.
5 Timeout period of 257 watchdog clock cycles.
6 Timeout period of 513 watchdog clock cycles.
7 Timeout period of 1k watchdog clock cycles.
8 Timeout period of 2k watchdog clock cycles.
9 Timeout period of 4k watchdog clock cycles.
10 Timeout period of 8k watchdog clock cycles.
11 Timeout period of 16k watchdog clock cycles.
12 Timeout period of 32k watchdog clock cycles.
13 Timeout period of 64k watchdog clock cycles.
14 Timeout period of 128k watchdog clock cycles.
15 Timeout period of 256k watchdog clock cycles.

1-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

R*

— L

...the world's most energy friendly wireless MCUs

7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 SWOSCBLOCK 0 RW Software Oscillator Disable Block
Set to disallow disabling of the selected WDOG oscillator. Writing this bit to 1 will turn on the selected WDOG oscillator if it is not
already running.
Value Description
0 Software is allowed to disable the selected WDOG oscillator. See CMU for detailed description. Note that also CMU
registers are lockable.
1 Software is not allowed to disable the selected WDOG oscillator.
5 EM4BLOCK 0 RW Energy Mode 4 Block
Set to prevent the EMU from entering EM4.
Value Description
0 EM4 can be entered. See EMU for detailed description.
1 EM4 cannot be entered.
4 LOCK 0 RW Configuration lock
Set to lock the watchdog configuration. This bit can only be cleared by reset.
Value Description
0 Watchdog configuration can be changed.
1 Watchdog configuration cannot be changed.
3 EM3RUN 0 RW Energy Mode 3 Run Enable
Set to keep watchdog running in EM3.
Value Description
0 Watchdog timer is frozen in EM3.
1 Watchdog timer is running in EM3.
2 EM2RUN 0 RW Energy Mode 2 Run Enable
Set to keep watchdog running in EM2.
Value Description
0 Watchdog timer is frozen in EM2.
1 Watchdog timer is running in EM2.
1 DEBUGRUN 0 RW Debug Mode Run Enable
Set to keep watchdog running in debug mode.
Value Description
0 Watchdog timer is frozen in debug mode.
1 Watchdog timer is running in debug mode.
0 EN 0 RW Watchdog Timer Enable

Set to enabled watchdog timer.

13.5.2 WDOG_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers please see Section 6.3 (p. 61) .

— — —
Reset)
Access g
N z
ame g
|
(@)

2015-01-13 - EZR32LG Family -

www.Silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 CLEAR 0 w1 Watchdog Timer Clear

Clear watchdog timer. The bit must be written 4 watchdog cycles before the timeout.

Value Mode Description
0 UNCHANGED Watchdog timer is unchanged.
1 CLEARED Watchdog timer is cleared to 0.

13.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

Offset Bit Position

0x008 5|8 |||V IV |J RIS |58 (2|3 g |(d|S|o|o|~|ow|s o l~|d]|0

Reset o |o

Access o 24

Name % z
CREs

Bit NET] Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 CMD 0 R CMD Register Busy

Set when the value written to CMD is being synchronized.

CTRL 0 R CTRL Register Busy

Set when the value written to CTRL is being synchronized.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

14 PRS - Peripheral Reflex System

What?
The PRS (Peripheral Reflex System)

allows configurable, fast and autonomous
communication between the peripherals.

Why?

Events and signals from one peripheral

can be used as input signals or triggers by
other peripherals and ensure timing-critical
operation and reduced software overhead.

;

ETAED,

How?

ADC L

DMA

Without CPU intervention the peripherals can
- send reflex signals (both pulses and level) to
each other in single- or chained steps. The
peripherals can be set up to perform actions
based on the incoming reflex signals. This
results in improved system performance and
reduced energy consumption.

T

14.1 Introduction

The Peripheral Reflex System (PRS) system is a network which allows the different peripheral modules
to communicate directly with each other without involving the CPU. Peripheral modules which send out
reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which
apply actions depending on the reflex signals received. The format for the reflex signals is not given, but
edge triggers and other functionality can be applied by the PRS.

14.2 Features

» 12 configurable interconnect channels
» Each channel can be connected to any producing peripheral
» Consumers can choose which channel to listen to
» Selectable edge detector (rising, falling and both edges)
» Software controlled channel output
» Configurable level
» Triggered pulses

14.3 Functional Description

An overview of the PRS module is shown in Figure 14.1 (p. 204) . The PRS contains 12 interconnect
channels, and each of these can select between all the output reflex signals offered by the producers.
The consumers can then choose which PRS channel to listen to and perform actions based on the
reflex signals routed through that channel. The reflex signals can be both pulse signals and level signals.
Synchronous PRS pulses are one HFPERCLK cycle long, and can either be sent out by a producer (e.g.,
ADC conversion complete) or be generated from the edge detector in the PRS channel. Level signals
can have an arbitrary waveform (e.g., Timer PWM output).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

14.3.1 Asynchronous Mode

Many reflex signals can operate in two modes, synchronous or asynchronous. A synchronous reflex is
clocked on HFPERCLK, and can be used as an input to all reflex consumers, but since they require
HFPERCLK, they will not work in EM2/EM3.

Asynchronous reflexes are not clocked on HFPERCLK, and can be used even in EM2/EMS3. There is
a limitation to reflexes operating in asynchronous mode though: they can only be used by a subset of
the reflex consumers, the ones marked with async support in Table 14.2 (p. 206) . Peripherals that
can produce asynchronous reflexes are marked with async support in Table 14.1 (p. 205) . To use
these reflexes asynchronously, set ASYNC in the CHCTRL register for the PRS channel selecting the
reflex signal.

Note
If a peripheral channel with ASYNC set is used in a consumer not supporting asynchronous
reflexes, the behaviour is undefined.

14.3.2 Channel Functions

Different functions can be applied to a reflex signal within the PRS. Each channel includes an edge
detector to enable generation of pulse signals from level signals. It is also possible to generate output
reflex signals by configuring the SWPULSE and SWLEVEL bits. SWLEVEL is a programmable level
for each channel and holds the value it is programmed to. The SWPULSE will give out a one-cycle
high pulse if it is written to 1, otherwise a 0 is asserted. The SWLEVEL and SWPULSE signals are
then XOR'ed with the selected input from the producers to form the output signal sent to the consumers
listening to the channel.

Note
The edge detector controlled by EDSEL should only be used when working with
synchronous reflexes, i.e., ASYNC in CHCTRL is cleared.

Figure 14.1. PRS Overview

I SGSEL[2:0] |
I SOURCESEL[5:0] | ©
o
| | &8
ASYNCIn] —
' =
I EDSEL[1:0] | é LAPBbus
% SWPULSE[N] | <
—| SWLEVEL[n] |
N
N
Signals from Reg S Signals to
producer S D— consumer
aaW)
peripherals peripherals

14.3.3 Producers

Each PRS channel can choose between signals from several producers, which is configured in
SOURCESEL in PRS_CHx_CTRL. Each of these producers outputs one or more signals which can
be selected by setting the SIGSEL field in PRS_CHx_CTRL. Setting the SOURCESEL bits to 0 (Off)
leads to a constant 0 output from the input mux. An overview of the available producers is given in
Table 14.1 (p. 205) .

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Table 14.1. Reflex Producers

ACMP Comparator Output Level Yes
ADC Single Conversion Done | Pulse
Scan Conversion Done Pulse
DAC Channel 0 Conversion Pulse
Done
Channel 1 Conversion Pulse
Done
GPIO Pin 0 Input Level Yes
Pin 1 Input Level Yes
Pin 2 Input Level Yes
Pin 3 Input Level Yes
Pin 4 Input Level Yes
Pin 5 Input Level Yes
Pin 6 Input Level Yes
Pin 7 Input Level Yes
Pin 8 Input Level Yes
Pin 9 Input Level Yes
Pin 10 Input Level Yes
Pin 11 Input Level Yes
Pin 12 Input Level Yes
Pin 13 Input Level Yes
Pin 14 Input Level Yes
Pin 15 Input Level Yes
RTC Overflow Pulse Yes
Compare Match 0 Pulse Yes
Compare Match 1 Pulse Yes
TIMER Underflow Pulse
Overflow Pulse
CCO Output Level
CC1 Output Level
CC2 Output Level
LETIMER CHO Level Yes
CH1 Level Yes
UART TX Complete Pulse
RX Data Received Pulse

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

...the world's most energy friendly wireless MCUs

USART TX Complete Pulse
RX Data Received Pulse
IrDA Decoder Output Level
VCMP Comparator Output Level Yes
LESENSE SCANRES register Level Yes
Decoder Output Level/Pulse Yes
BURTC Overflow Pulse Yes
Compare match 0 Pulse Yes
USB Start of Frame Yes
Start of Fram Sent/ Yes
Received

14.3.4 Consumers

Consumer peripherals (listed in Table 14.2 (p. 206)) can be set to listen to a PRS channel and perform
an action based on the signal received on that channel. Most consumers expect pulse input, while some
can handle level inputs as well.

Table 14.2. Reflex Consumers

ADC Single Mode Trigger Pulse

Scan Mode Trigger Pulse
DAC Channel 0 Trigger Pulse

Channel 1 Trigger Pulse
TIMER CCO Input Pulse/Level

CC1 Input Pulse/Level

CC2 Input Pulse/Level

DTI Fault Source 0 Pulse

(TIMERO only)

DTI Fault Source 1 Pulse

(TIMERO only)

DTI Input (TIMERO only) | Pulse/Level
UART TX/RX Enable Pulse

RX Input Pulse/Level Yes
USART TX/RX Enable Pulse

IrDA Encoder Input Pulse

RX Input Pulse/Level Yes
LEUART RX Input Pulse/Level Yes
PCNT SO0 input Level Yes

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

= L F ...the world's most energy friendly wireless MCUs

S1input Level Yes
LESENSE Start scan Pulse/Level Yes
Decoder Bit 0 Level Yes
Decoder Bit 1 Level Yes
Decoder Bit 2 Level Yes
Decoder Bit 3 Level Yes

Note
It is possible to output prs channel 0 - channel 3 onto the GPIO by setting CHOPEN,
CH1PEN, CH2PEN, or CH3PEN in the PRS_ROUTE register.

14.3.5 Example

The example below (illustrated in Figure 14.2 (p. 207)) shows how to set up ADCO to start single
conversions every time TIMERO overflows (one HFPERCLK cycle high pulse), using PRS channel 5:

* Set SOURCESEL in PRS_CH5_CTRL to 0b011100 to select TIMERO as input to PRS channel 5.

e Set SIGSEL in PRS_CH5_CTRL to 0b001 to select the overflow signal (from TIMERO).

» Configure ADCO with the desired conversion set-up.

» Set SINGLEPRSEN in ADCO_SINGLECTRL to 1 to enable single conversions to be started by a high
PRS input signal.

» Set SINGLEPRSSEL in ADCO_SINGLECTRL to 0x5 to select PRS channel 5 as input to start the
single conversion.

» Start TIMERO with the desired TOP value, an overflow PRS signal is output automatically on overflow.

Note that the ADC results needs to be fetched either by the CPU or DMA.

Figure 14.2. TIMERO overflow starting ADCO single conversions through PRS channel 5.

TIMERO ADCO
Overflow Start single conv.
chO
chl
ch2
ch3
PRS .4
ch5 @ L
ch6
ch7

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

14.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 PRS_SWPULSE w1 Software Pulse Register

0x004 PRS_SWLEVEL RW Software Level Register

0x008 PRS_ROUTE RW 1/0 Routing Register

0x010 PRS_CHO_CTRL RW Channel Control Register
PRS_CHx_CTRL RW Channel Control Register

0x03C PRS_CH11_CTRL RW Channel Control Register

14.5 Register Description

14.5.1 PRS_SWPULSE - Software Pulse Register

Offset Bit Position
o000 18| |8 |k (g[8 |g|ga|n|ela|3 |8y]o o oo || |~]]0
Reset o o|lo|o|olo|o|o|o|o|o
SHEEEEEBBEEEE
L L L w w |w|w w w L L 1]
58|55 2 55(3|5/8 5|8
TIZ|5|8|5|55(5|5|5(5|5
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11PULSE 0 w1 Channel 11 Pulse Generation
See bit 0.
10 CH10PULSE 0 w1 Channel 10 Pulse Generation
See bit 0.
9 CH9PULSE 0 w1 Channel 9 Pulse Generation
See bit 0.
8 CH8PULSE 0 w1 Channel 8 Pulse Generation
See bit 0.
7 CH7PULSE 0 w1 Channel 7 Pulse Generation
See bit 0.
6 CH6PULSE 0 w1 Channel 6 Pulse Generation
See bit 0.
5 CH5PULSE 0 w1 Channel 5 Pulse Generation
See bit 0.
4 CH4PULSE 0 w1 Channel 4 Pulse Generation
See bit 0.
3 CH3PULSE 0 w1 Channel 3 Pulse Generation
See bit 0.
2 CH2PULSE 0 w1 Channel 2 Pulse Generation
See bit 0.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Bit Name Reset Access Description

1 CH1PULSE 0 w1 Channel 1 Pulse Generation
See bit 0.

0 CHOPULSE 0 w1 Channel 0 Pulse Generation

Write to 1 to generate one HFPERCLK cycle high pulse. This pulse is XOR'ed with the corresponding bit in the SWLEVEL register
and the selected PRS input signal to generate the channel output.

14.5.2 PRS_SWLEVEL - Software Level Register

Offset Bit Position
oot |7 g8 |N|ge g sl gals|ela|s gy ||~ oo | |||~
Reset o
S QT T TR T) T T T T T
Name %%EE%%%EE%E%
S EIEEEI I EIEIERE
TIZ|5|5|5|55(5|5|5(5]5
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 CH11LEVEL 0 RW Channel 11 Software Level
See bit 0.
10 CH10LEVEL 0 RW Channel 10 Software Level
See bit 0.
9 CHOLEVEL 0 RW Channel 9 Software Level
See bit 0.
8 CH8LEVEL 0 RW Channel 8 Software Level
See bit 0.
7 CH7LEVEL 0 RW Channel 7 Software Level
See bit 0.
6 CH6LEVEL 0 RW Channel 6 Software Level
See bit 0.
5 CH5LEVEL 0 RW Channel 5 Software Level
See bit 0.
4 CH4LEVEL 0 RW Channel 4 Software Level
See bit 0.
3 CH3LEVEL 0 RW Channel 3 Software Level
See bit 0.
2 CH2LEVEL 0 RW Channel 2 Software Level
See bit 0.
1 CHI1LEVEL 0 RW Channel 1 Software Level
See bit 0.
0 CHOLEVEL 0 RW Channel 0 Software Level

The value in this register is XOR'ed with the corresponding bit in the SWPULSE register and the selected PRS input signal to generate

the channel output.

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

14.5.3 PRS_ROUTE - I/0 Routing Register

Offset Bit Position
o008 |8 |8 |8 |gr|[I 88| |g|ga|n|ela| |8y]o|n|r|ejw || |~]]0
Reset 2
o
Access 5 5 5
& Gl|&|@| @
Name = o la | |a
< Mo |lN |4 | S
) I || |X
Io) o|lo|o 0O
-
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 LOCATION 0x0 RW I/O Location
Decides the location of the PRS I/O pins.
Value Mode Description
0 LOCO Location O
1 LOC1 Location 1
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3 CH3PEN 0 RW CH3 Pin Enable
When set, GPIO output from PRS channel 3 is enabled
2 CH2PEN 0 RW CH2 Pin Enable
When set, GPIO output from PRS channel 2 is enabled
1 CH1PEN 0 RW CH1 Pin Enable
When set, GPIO output from PRS channel 1 is enabled
0 CHOPEN 0 RW CHO Pin Enable

When set, GPIO output from PRS channel O is enabled

14.5.4 PRS_CHx_CTRL - Channel Control Register

Offset Bit Position
0x010 5|87 |IJI|Q(J|J |3 |5 |9 |a|3 |38 |38]|@ Wit |o a0
Reset o e § 2
S ES S
Access 5 5 5 5
-
% Z 2 d
Name 2 3 s 2
2 3 : g
3 7
D
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
28 ASYNC 0 RW Asynchronous reflex
Set to disable synchronization of this reflex signal
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
25:24 EDSEL 0x0 RW Edge Detect Select

Select edge detection.

Value Mode

Description

0 OFF

Signal is left as it is

01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

©
t 2 R ...the world's most energy friendly wireless MCUs

Value Mode Description
1 POSEDGE A one HFPERCLK cycle pulse is generated for every positive edge of the incoming
signal
2 NEGEDGE A one HFPERCLK clock cycle pulse is generated for every negative edge of the
incoming signal
3 BOTHEDGES A one HFPERCLK clock cycle pulse is generated for every edge of the incoming signal
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21:16 SOURCESEL 0x00 RW Source Select

Select input source to PRS channel.

Value Mode Description
0b000000 NONE No source selected
0b000001 VCMP Voltage Comparator
0b000010 ACMPO Analog Comparator 0
0b000011 ACMP1 Analog Comparator 1
0b000110 DACO Digital to Analog Converter 0
0b001000 ADCO Analog to Digital Converter 0
0b010000 USARTRFO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b010001 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b010010 USART2 Universal Synchronous/Asynchronous Receiver/Transmitter 2
0b011100 TIMERO Timer O
0b011101 TIMER1 Timer 1
0b011110 TIMER2 Timer 2
0b011111 TIMER3 Timer 3
0b100100 usB Universal Serial Bus Interface
0b101000 RTC Real-Time Counter
0b101001 UARTO Universal Asynchronous Receiver/Transmitter O
0b101010 UART1 Universal Asynchronous Receiver/Transmitter 1
0b110000 GPIOL General purpose Input/Output
0b110001 GPIOH General purpose Input/Output
0b110100 LETIMERO Low Energy Timer O
0b110111 BURTC Backup RTC
0b111001 LESENSEL Low Energy Sensor Interface
0b111010 LESENSEH Low Energy Sensor Interface
0b111011 LESENSED Low Energy Sensor Interface
15:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0 SIGSEL 0x0 RW Signal Select
Select signal input to PRS channel.
Value Mode Description
SOURCESEL = 0b000000
(NONE)
Obxxx OFF Channel input selection is turned off
SOURCESEL = 0b000001
(VCMP)
0b000 VCMPOUT Voltage comparator output VCMPOUT
SOURCESEL = 0b000010
(ACMPO)
0b000 ACMPOOUT Analog comparator output ACMPOOUT
SOURCESEL = 0b000011
(ACMP1)
0b000 ACMP10OUT Analog comparator output ACMP10OUT
SOURCESEL = 0b000110 (DACO)
0b000 DACOCHO DAC ch0 conversion done DACOCHO
0b001 DACOCH1 DAC ch1l conversion done DACOCH1
SOURCESEL = 0b001000 (ADCO)
0b000 ADCOSINGLE ADC single conversion done ADCOSINGLE

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Value Mode Description

0b001 ADCOSCAN ADC scan conversion done ADCOSCAN
SOURCESEL = 0b010000

(USARTRFO)

0b000 USARTRFOIRTX USART 0 IRDA out USARTRFOIRTX
0b001 USARTRFOTXC USART 0 TX complete USARTRFOTXC
0b010 USARTRFORXDATAV USART 0 RX Data Valid USARTRFORXDATAV
SOURCESEL = 0b010001

(USART1)

0b001 USARTI1TXC USART 1 TX complete USART1TXC
0b010 USART1RXDATAV USART 1 RX Data Valid USART1IRXDATAV
SOURCESEL = 0b010010

(USART2)

0b001 USART2TXC USART 2 TX complete USART2TXC
0b010 USART2RXDATAV USART 2 RX Data Valid USART2RXDATAV
SOURCESEL = 0b011100

(TIMERO)

0b000 TIMEROUF Timer 0 Underflow TIMEROUF

0b001 TIMEROOF Timer 0 Overflow TIMEROOF

0b010 TIMEROCCO Timer 0 Compare/Capture 0 TIMEROCCO
0b011 TIMEROCC1 Timer 0 Compare/Capture 1 TIMEROCC1
0b100 TIMEROCC2 Timer 0 Compare/Capture 2 TIMEROCC2
SOURCESEL = 0b011101

(TIMER1)

0b000 TIMER1UF Timer 1 Underflow TIMER1UF

0b001 TIMER1OF Timer 1 Overflow TIMER1OF

0b010 TIMER1CCO Timer 1 Compare/Capture 0 TIMER1CCO
0b011 TIMER1CC1 Timer 1 Compare/Capture 1 TIMER1ICC1
0b100 TIMER1CC2 Timer 1 Compare/Capture 2 TIMER1CC2
SOURCESEL = 0b011110

(TIMER2)

0b000 TIMER2UF Timer 2 Underflow TIMER2UF

0b001 TIMER20OF Timer 2 Overflow TIMER20OF

0b010 TIMER2CCO Timer 2 Compare/Capture 0 TIMER2CCO
0b011 TIMER2CC1 Timer 2 Compare/Capture 1 TIMER2CC1
0b100 TIMER2CC2 Timer 2 Compare/Capture 2 TIMER2CC2
SOURCESEL = 0b011111

(TIMER3)

0b000 TIMER3UF Timer 3 Underflow TIMER3UF

0b001 TIMER3OF Timer 3 Overflow TIMER3OF

0b010 TIMER3CCO Timer 3 Compare/Capture 0 TIMER3CCO
0b011 TIMER3CC1 Timer 3 Compare/Capture 1 TIMER3CC1
0b100 TIMER3CC2 Timer 3 Compare/Capture 2 TIMER3CC2
SOURCESEL = 0b100100 (USB)

0b000 USBSOF USB Start of Frame USBSOF

0b001 USBSOFSR USB Start of Frame Sent/Received USBSOFSR
SOURCESEL = 0b101000 (RTC)

0b000 RTCOF RTC Overflow RTCOF

0b001 RTCCOMPO RTC Compare 0 RTCCOMPO

0b010 RTCCOMP1 RTC Compare 1 RTCCOMP1
SOURCESEL = 0b101001

(UARTO)

0b001 UARTOTXC USART 0 TX complete UARTOTXC

0b010 UARTORXDATAV USART 0 RX Data Valid UARTORXDATAV
SOURCESEL = 0b101010

(UART1)

0b001 UART1TXC USART 0 TX complete UART1TXC

0b010 UART1RXDATAV USART 0 RX Data Valid UART1IRXDATAV
SOURCESEL = 0b110000 (GPIO)

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

—

ZR:

...the world's most energy friendly wireless MCUs

Value Mode Description

0b000 GPIOPINO GPIO pin 0 GPIOPINO

0b001 GPIOPIN1 GPIO pin 1 GPIOPIN1

0b010 GPIOPIN2 GPIO pin 2 GPIOPIN2

0b011 GPIOPIN3 GPIO pin 3 GPIOPIN3

0b100 GPIOPIN4 GPIO pin 4 GPIOPIN4

0Ob101 GPIOPINS GPIO pin 5 GPIOPIN5

0Ob110 GPIOPING6 GPIO pin 6 GPIOPING6

Ob111 GPIOPIN7 GPIO pin 7 GPIOPIN7

SOURCESEL = 0b110001 (GPIO)

0b000 GPIOPIN8 GPIO pin 8 GPIOPIN8

0b001 GPIOPIN9 GPIO pin 9 GPIOPIN9

0b010 GPIOPIN10 GPIO pin 10 GPIOPIN10

0b011 GPIOPIN11 GPIO pin 11 GPIOPIN11

0b100 GPIOPIN12 GPIO pin 12 GPIOPIN12

0b101 GPIOPIN13 GPIO pin 13 GPIOPIN13

O0b110 GPIOPIN14 GPIO pin 14 GPIOPIN14

Ob111 GPIOPIN15 GPIO pin 15 GPIOPIN15

SOURCESEL = 0b110100

(LETIMERO)

0b000 LETIMEROCHO LETIMER CHO Out LETIMEROCHO

0b001 LETIMEROCH1 LETIMER CH1 Out LETIMEROCH1

SOURCESEL = 0b110111

(BURTC)

0b000 BURTCOF BURTC Overflow BURTCOF

0b001 BURTCCOMPO BURTC Compare 0 BURTCCOMPO

SOURCESEL = 0b111001

(LESENSE)

0b000 LESENSESCANRESO LESENSE SCANRES register, bit 0 LESENSESCANRESO

0b001 LESENSESCANRES1 LESENSE SCANRES register, bit 1 LESENSESCANRES1

0b010 LESENSESCANRES2 LESENSE SCANRES register, bit 2 LESENSESCANRES2

0b011 LESENSESCANRES3 LESENSE SCANRES register, bit 3 LESENSESCANRES3

0b100 LESENSESCANRES4 LESENSE SCANRES register, bit 4 LESENSESCANRES4

0Ob101 LESENSESCANRESS LESENSE SCANRES register, bit 5 LESENSESCANRES5

0b110 LESENSESCANRES6 LESENSE SCANRES register, bit 6 LESENSESCANRES6

Ob111 LESENSESCANRES7 LESENSE SCANRES register, bit 7 LESENSESCANRES7

SOURCESEL = 0b111010

(LESENSE)

0b000 LESENSESCANRESS LESENSE SCANRES register, bit 8 LESENSESCANRES8

0b001 LESENSESCANRES9 LESENSE SCANRES register, bit 9 LESENSESCANRES9

0b010 LESENSESCANRES10 LESENSE SCANRES register, bit 10
LESENSESCANRES10

0b011 LESENSESCANRES11 LESENSE SCANRES register, bit 11
LESENSESCANRES11

0b100 LESENSESCANRES12 LESENSE SCANRES register, bit 12
LESENSESCANRES12

0b101 LESENSESCANRES13 LESENSE SCANRES register, bit 13
LESENSESCANRES13

0b110 LESENSESCANRES14 LESENSE SCANRES register, bit 14
LESENSESCANRES14

Ob111 LESENSESCANRES15 LESENSE SCANRES register, bit 15
LESENSESCANRES15

SOURCESEL = 0b111011

(LESENSE)

0b000 LESENSEDECO LESENSE Decoder PRS out 0 LESENSEDECO

0b001 LESENSEDEC1 LESENSE Decoder PRS out 1 LESENSEDEC1

0b010 LESENSEDEC2 LESENSE Decoder PRS out 2 LESENSEDEC2

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

15 USB - Universal Serial Bus Controller

What?

The USB is a full-speed/low-speed USB 2.0
compliant USB Controller that can be used
in various OTG Dual Role Device, Host and
Device configurations. The on-chip 3.3V
regulator delivers up to 50 mA and can also
be used to power external components,
eliminating the need for an external LDO. The
on-chip regulator allows the system to run
from a battery utilizing the full voltage range
of the EZR32 still being compliant with the
3.3V +/- 10% USB voltage range.
Why?

USB provides a robust, industry-standard
way to interface PCs and other portable
devices.

How?

The flexible and highly software-configurable
architecture of the USB Controller makes it
easy to implement both device- and host-
capable solutions. The on-chip OTG PHY
with software controllable pull-up and pull-
down resistors, VBUS comparators and
ID-line detection reduces the number of
external components to a minimum. Third-
party USB software stacks are also available,
reducing the development time substantially.
By utilizing the very low energy consumption
in EM2, the USB device will be able to wake
up and perform tasks several times a second
without violating the 2.5 mA maximum
average current during suspend.

15.1 Introduction

The USB is a full-speed/low-speed USB 2.0 compliant OTG host/device controller. The architecture is
very flexible and allows the USB to be used in various On-the-go (OTG) Dual-Role Device, Host- and
Device-only configurations. The USB supports HNP and SRP protocols and both OTG Revisions 1.3
and 2.0 are supported A switchable external 5V supply or step-up regulator is needed for OTG Dual
Role Device and Host configurations. The on-chip voltage regulator and PHY reduces the number of
external components to a minimum.

15.2 Features

Fully compliant with Universal Serial Bus Specification, Revision 2.0

« Supports full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) host and device
» Dedicated Internal DMA Controller

» 12 software-configurable endpoints (6 IN, 6 OUT) in addition to endpoint O
» 2 KB endpoint memory

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

* Resume/Reset detection in EM2 (during suspend)
* SRP detection in EM2 (during host session off)
» Soft connect/disconnect
* Full OTG support
» Compliant with On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification,
Revision 2.0
» Compliant with USB On-The-Go Supplement, Revision 1.3
» Supports Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
e On-chip PHY
* Internal pull-up and pull-down resistors
» Voltage comparators for monitoring VBUS voltage
» A/B Device identification using ID line
» Charge/discharge of VBUS for VBUS-pulsing
 Internal 3.3V Regulator
e OQutput voltage: 3.3V
* OQutput current: 50 mA
 Input voltage range: 4.0 - 5.5V
» Enabled automatically when input voltage applied
» Low quiescent current: 100 uA
» Dedicated input pin allows regulator to be used in OTG and host configurations
» Output pin can be used to power the EZR32 itself as well as external components

* Regulator voltage output sense feature for detecting USB plug/unplug events (also available in
EM2/3)

15.3 USB System Description

A block diagram of the USB is shown in Figure 15.1 (p. 215) .

Figure 15.1. USB Block Diagram

The USB consists of a digital logic part, an endpoint RAM, PHY and a voltage regulator with output
voltage sensor. The voltage regulator provides a stable 3.3 V supply for the PHY, but can also be used
to power the EZR32 itself as well as external components.

The digital logic of the USB is split into two parts: system and core.

The system part is accessed using USB registers from offset 0x000 to 0x018 and controls the voltage
regulator and enabling/disabling of the PHY and USB pins. This part is clocked by HFCORECLK;sg and
is accessed using an APB slave interface. The system part can thus be accessed independently of the
core part, without HFCORECLKsgc running.

The core part is clocked by HFCORECLKsgc and is accessed using an AHB slave interface. This
interface is used for accessing the FIFO contents and the registers in the core part starting at offset
0x3C000. An additional master interface is used by the internal DMA controller of the core. The core
part takes care of all the USB protocol related functionality. The clock to the system part must not be
disabled when the core part is active.

There are several pins associated with the USB. USB_DP and USB_DM are the USB D+ and D- pins.
These are the USB data signaling pins. USB_VBUS should be connected to the VBUS (5V) pin on
the USB receptacle. It is connected to the voltage comparators and current sink/source in the PHY.
USB_ID is the OTG ID pin used to detect the device type (A or B). This pin can be left unconnected
when not used. USB_VBUSEN is used to turn on and off VBUS power when operating as host-only or
OTG A-Device. USB_VREGI is the input to the voltage regulator and USB_VREGO is the regulated
output. USB_DMPU is used to enable/disable an external D- pull-up resistor. This is needed for low-

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

speed device only. USB_VBUSEN and USB_DMPU will be high-impedance until enabled from software.
Thus, if a defined level is required during start-up an external pull-up/pull-down can be used.

15.3.1 USB Clocks

The USB requires the device to run a 48 MHz crystal (2500 ppm or better). The core part of the USB
will always run from HFCORECLKyggc, Which is 48 MHz. The current consumption for the rest of
the device can be reduced by dividing down HFCORECLK using the CMU_HFCORECLKDIV register.
Bandwidth requirements for the specific USB application must be taken into account when dividing down
HFCORECLK.

15.3.2 USB Initialization

Follow these steps to enable the USB:

1. Enable the clock to the system part by setting USB in CMU_HFCORECLKENO.
2. If the internal USB regulator is bypassed (by applying 3.3V on USB_VREGI and USB_VREGO
externally), disable the regulator by setting VREGDIS in USB_CTRL.

3. If the PHY is powered from VBUS using the internal regulator, the VREGO sense circuit should be
enabled by setting VREGOSEN in USB_CTRL.

4. Enable the USB PHY pins by setting PHYPEN in USB_ROUTE.

5. If host or OTG dual-role device, set VBUSENAP in USB_CTRL to the desired value and then enable
the USB_VBUSEN pin in USB_ROUTE. Set the MODE for the pin to PUSHPULL.

6. If low-speed device, set DMPUAP in USB_CTRL to the desired value and then enable the
USB_DMPU pin in USB_ROUTE. Set the MODE for the pin to PUSHPULL.

7. Make sure the oscillator is ready and selected in CMU_CMD_USBCCLKSEL.

8. Enable the clock to the core part by setting USBC in CMU_HFCORECLKENO.

9. Wait for the core to come out of reset. This is easiest done by polling a core register with non-zero
reset value until it reads a non-zero value. This takes approximately 20 48-MHz cycles.

10Start initializing the USB core as described in USB Core Description.

15.3.3 Configurations

The USB can be used as Device, OTG Dual Role Device or Host. The sections below describe
the different configurations. External ESD protection and series resistors for impedance matching are
required. The voltage regulator requires a 4.7 uF external decoupling capacitor on the input and a 1 uF
external decoupling capacitor on the output. Decoupling not related to USB is not shown in the figures.

15.3.3.1 Bus-powered Device
A bus-powered device configuration is shown in Figure 15.2 (p. 217). In this configuration the voltage
regulator powers the PHY and the EZR32 at 3.3 V. The voltage regulator output (USB_VREGO) can

also be used to power other components of the system.

In this configuration, the VREGO sense circuit should be left disabled.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

Figure 15.2. Bus-powered Device

...the world's most energy friendly wireless MCUs

VvDD

USB_VREGO
USB_VREGI _I_
MCU . T =
=
USB_VBUS m S |VBUS
- O
USB_DP WWY g 2 |D+
T O
USB_DM WW— % & |D-
f @ ﬁ GND

15.3.3.2 Self-powered Device

A self-powered device configuration is shown in Figure 15.3 (p. 217). When the USB is configured as
a self-powered device, the voltage regulator is typically used to power the PHY only, although it may also
be used to power other 3.3 V components. When the USB is connected to a host, the voltage regulator is
activated. Software can detect this event by enabling the VREGO Sense High (VREGOSH) interrupt. The
PHY pins can then be enabled and USB traffic can start. The VREGO Sense Low (VREGOSL) interrupt
can be used to detect when VBUS voltage disappears (for example if the USB cable is unplugged).

In this configuration, the VREGO sense circuit must be enabled.

Figure 15.3. Self-powered Device

GND

1.8V -3.6V
VDD
USB_VREGO —_
USB_VREGI
MCU) T =
=
USB VBUS o S |VBUS
USB DP WWY E § D+
T O
USB DM WW s & |D-
7 g

15.3.3.3 Self-powered Device (with bus-power switch)

A self-powered device (with bus-power switch) may switch power supply to VBUS when connected to
a host. This is typically useful for extending the life of battery-powered devices and enables the use of
coin-cell driven systems with low maximum peak current. The external components required typically
include 2 transistors, 2 diodes and a few resistors. See application note for details. This allows seamless
power supply switching between a battery and the voltage regulator output.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

The VREGO Sense High interrupt is used to detect when VBUS becomes present. Software can then
enable the external transistor connected to USB_VREGO, effectively switching the power source. A
regular GPIO pin is used to control this transistor. If necessary, the application may have to reduce the
current consumption before switching to the USB power source. If VBUS voltage is removed, the circuit
switches automatically back to the battery power supply. If necessary software must react quickly to
this event and reduce the current consumption (for example by reducing the clock frequency) to avoid
excessive voltage drop. This configuration is shown in Figure 15.4 (p. 218) .

In this configuration, the VREGO sense circuit must be enabled.

Figure 15.4. Self-powered Device (with bus-power switch)

1.8V -3.6V
Dual- Power
Circuit
VDD
(enable) GPIO|
USB_VREGO
USB_VREGI _I_
MCU) T =
USB VBUS o 5 |vBus
- O
USB DP W g 2 |D+
©T O
USB DM W S & |D-
f @ Q GND

15.3.3.4 OTG Dual Role Device (5V)

An OTG Dual Role Device (5V) configuration is shown in Figure 15.5 (p. 219). When 5V is available,
the internal regulator can be used to power the EZR32. An external power switch is needed to control
VBUS power. For over-current detection a regular GPIO input pin with interrupt is used. The application
should turn off or limit VBUS power when over-current is detected. In OTG mode, the maximum VBUS
decoupling capacitance is 6.5 uF.

In this configuration, the VREGO sense circuit should be left disabled.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

Figure 15.5. OTG Dual Role Device (5V)

mi
L

VDD

5V
USB_VREGO -

USB_VREGI

L
T Power switch +

over- current detection

GPIO (over- currentfb—OC
M CU USB_VBUSEN ——EN

USB VBUS
UsB DP
USB DM WWA

Micro- AB

UsB ID

(ESD Protection)

'”—l
o)
=z
5

15.3.3.5 OTG Dual Role Device (5V step-up regulator)

An OTG Dual Role Device (5V step-up regulator) configuration is shown in Figure 15.6 (p. 219). When
5V is not available, an external 5V step-up regulator is needed. In this configuration, the voltage for the
EZR32 must be in the range 3.0V - 3.6V. In this mode the voltage regulator is bypassed by connecting
both the input and output to the external supply. This effectively causes the PHY to be powered directly
from the external 3.0 - 3.6 V supply. The voltage regulator should be disabled when operating in
this mode. For over-current detection a regular GPIO input pin with interrupt is used. The application
should turn off or limit VBUS power when over-current is detected. In OTG mode, the maximum VBUS
decoupling capacitance is 6.5 uF.

In this configuration, the VREGO sense circuit should be left disabled.

Figure 15.6. OTG Dual Role Device (5V step-up regulator)

3.0V-3.6V

VDD

USB_VREGI
USB_VREGO :l

5V step-up
MCU GPIO (over- current] oc Vi
USB_VBUSEN EN
out
USB VBUS = |VBUS
o
USB DP WWA g '§ D+
USB_DM ° 3 |b-
S &
USB_ID s ﬁ D
f < |GND

15.3.3.6 Host

A host configuration is shown in Figure 15.7 (p. 220). In this example a 5V step-up regulator is used.
If 5V is available, a power switch can be used instead, as shown in Figure 15.5 (p. 219) . The host
configuration is equal to OTG Dual Role Device, except for the USB_ID pin which is not used and the

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

USB connector which is a USB Standard-A Connector. In host mode, the minimum VBUS decoupling
capacitance is 96 uF.

In this configuration, the VREGO sense circuit should be left disabled.

Figure 15.7. Host

3.0V -3.6V
VDD
USB_VREGI :|
USB_VREGO
5V step-up
MCU GPIO (over- current] oc Vin
USB VBUSEN |——EN v
out
USB VBUS | < & |vBus
USB DP WW T g o+
5 ©
USB_DM c & |D-
f @ ﬁ GND

15.3.4 PHY

The USB includes an internal full-speed/low-speed PHY with built-in pull-up/pull-down resistors, VBUS
comparators and ID line state sensing. During suspend, the PHY enters a low-power state where only
the single-ended receivers are active. The PHY is disabled by default and should be enabled by setting
PHYPEN in USB_ROUTE before the USB core clock is enabled.

The PHY is powered by the internal voltage regulator output (USB_VREGO). To power the PHY
directly from an external source (for example an external 3.3 V LDO), connect both USB_VREGO and
USB_VREGI to the external 3.3 V supply voltage. To stop the quiescent current present with the voltage
regulator enabled in this configuration, disable the the regulator by setting VREGDIS in USB_CTRL after
power up. Then the regulator is effectively bypassed.

When VREGO Sense is enabled, the PHY is automatically disabled internally when the VREGO Sense
output is low. This will happen if VBUS-power disappears. The application can detect this by keeping
the VREGO Sense Low Interrupt enabled. Note that PHYPEN in USB_ROUTE will not be set to 0 in this
case. Also, the PHY must always be disabled manually when there is no voltage applied to VREGO.

15.3.5 Voltage Regulator

The voltage regulator is used to regulate the 5 V VBUS voltage down to 3.3 V which is the operating
voltage for the PHY.

A decoupling capacitor is required on USB_VREGI and USB_VREGO. Note that the USB standard
requires the total capacitance on VBUS to be 1 uF minimum and 10 uF maximum for regular devices.
OTG devices can have maximum 6.5 uF capacitance on VBUS.

The voltage regulator is enabled by default and can thus be used to power the EZR32 itself. Systems not
using the USB should disable the regulator by setting VREGDIS in USB_CTRL. A voltage sense circuit
monitors the output voltage and can be used to detect when the voltage regulator becomes active. This
sense circuit can also be used to detect when the voltage drops (typically due to the USB cable being
unplugged). If regulator voltage monitoring is not required (i.e. it is known that the VREGO voltage is
always present), the sense circuit should be left disabled.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

During suspend, the bias current for the regulator can be reduced if the current requirements in EM2/3 are
low. The bias currentin EM2/3 is controlled by BIASPROGEM23 in USB_CTRL. When EM2/3 is entered,
the bias current for the regulator switches to what is specified in BIASPROGEM23 in USB_CTRL. When
entering EMO again (due to USB resume/reset signaling or any other wake-up interrupt) the regulator
switches back to using the value specified in BIASPROGEMO01 in USB_CTRL.

15.3.6 Interrupts and PRS

Interrupts from the core and system part share a common USB interrupt line to the CPU. The interrupt
flags for the system part are grouped together in the USB_IF register. The interrupt events from the core
are controlled by several core interrupt flag registers.

There are two PRS outputs from the USB: SOF and SOFSR. In Host mode, SOF toggles every time an
SOF is generated and SOFSR toggles every time an SOF is successfully transmitted. In Device mode,
SOF toggles every time an SOF token is received from the USB host or when an SOF token is missed
at the start of frame, while SOFSR toggles only when a valid SOF token is received from the USB host.
Both PRS outputs must be synchronized in the PRS when used (i.e. it is an asynchronous PRS output).
The edge-to-pulse converter in the PRS can be used to convert the edges into pulses if needed. The
PRS outputs go to 0 in EM2/3.

15.3.7 USB in EM2

During suspend and session-off EM2 should be used to save power and meet the average current
requirements dictated by the USB standard. Before entering EM2, HFCORECLKsgc must be switched
from 48 MHz to 32 kHz (LFXO or LFRCO). This is done using the CMU_CMD and CMU_STATUS
registers. Upon EM2 wake-up, HFCORECLK;sgc must be switched back to 48 MHz before accessing
the core registers. The device always starts up from HFRCO so software must restart HFXO and switch
from HFRCO to HFXO. The USB system clock, HFCORECLK;sg, must be kept enabled during EM2. The
USB system registers can be accessed immediately upon EM2 wake-up, while running from HFRCO.
Follow the steps outlined the USB Core Description when entering EM2 during suspend and session-off.

The FIFO content is lost when entering EM2. In addition, most of the USB core registers are reset and
therefore need to be backed up in RAM.

EMS3 cannot be used when the USB is active. However, EM3 can be used while waiting for the internal
voltage regulator to be activated (i.e. VBUS becomes 5V).

15.4 USB Core Description

This section describes the programming requirements for the USB Corein Host and Device modes.
Important features/parameters for the core are:

« HNP- and SRP-Capable OTG (Device and Host)

 Internal DMA (Buffer Pointer Based)

» Dedicated TX FIFOS for each endpoint in device mode

» 6 IN/OUT endpoints in addition to endpoint O (in device mode)

» 14 host channels (in host mode)
>

* Dynamic FIFO sizing
» Non-Periodic Request Queue Depth: 8
» Host Mode Periodic Request Queue Depth: 8

The core has the following limitations:

* Link Power Management (LPM) is not supported
e ADP is not supported

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

Portions Copyright © 2010 Synopsys, Inc. Used with permission. Synopsys and DesignWare are
registered trademarks of Synopsys, Inc.

15.4.1 Overview: Programming the Core

Each significant programming feature of the core is discussed in a separate section.

This chapter uses abbreviations for register names and their fields. For detailed information on registers,
see Section 15.6 (p. 325) .

The application must perform a core initialization sequence. If the cable is connected during power-up,
the Current Mode of Operation bit in the Core Interrupt register (USB_GINTSTS.CURMOD) reflects the
mode. The core enters Host mode when an “A” plug is connected, or Device mode when a “B” plug
is connected.

This section explains the initialization of the core after power-on. The application must follow the
initialization sequence irrespective of Host or Device mode operation. All core global registers are
initialized according to the core’s configuration.

1. Program the following fields in the Global AHB Configuration (USB_GAHBCFG) register.
* DMA Mode bit
» AHB Burst Length field
e Global Interrupt Mask bit = 1
* Non-periodic TXFIFO Empty Level (can be enabled only when the core is operating in Slave mode
as a host.)
» Periodic TXFIFO Empty Level (can be enabled only when the core is operating in Slave mode)
2. Program the following field in the Global Interrupt Mask (USB_GINTMSK) register:
* USB_GINTMSK.RXFLVLMSK =0
3. Program the following fields in USB_GUSBCFG register.
* HNP Capable bit
« SRP Capable bit
» External HS PHY or Internal FS Serial PHY Selection bit
» Time-Out Calibration field
* USB Turnaround Time field
4. The software must unmask the following bits in the USB_GINTMSK register.
e OTG Interrupt Mask
* Mode Mismatch Interrupt Mask
5. The software can read the USB_GINTSTS.CURMOD bit to determine whether the core is operating
in Host or Device mode. The software the follows either the Section 15.4.1.1 (p. 222) or Device
Initialization (p. 223) sequence.

Note
The core is designed to be interrupt-driven. Polling interrupt mechanism is not
recommended: this may result in undefined resolutions.

Note
In device mode, just after Power On Reset or a Soft Reset, the USB_GINTSTS.SOF bit is
set to 1 for debug purposes. This status must be cleared and can be ignored.

15.4.1.1 Host Initialization
To initialize the core as host, the application must perform the following steps.

1. Program USB_GINTMSK.PRTINT to unmask.
2. Program the USB_HCFG register to select full-speed host.
3. Program the USB_HPRT.PRTPWR bit to 1. This drives VBUS on the USB.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

. Wait for the USB_HPRT.PRTCONNDET interrupt. This indicates that a device is connect to the port.
. Program the USB_HPRT.PRTRST bit to 1. This starts the reset process.
. Wait at least 10 ms for the reset process to complete.
. Program the USB_HPRT.PRTRST bit to 0.
. Wait for the USB_HPRT.PRTENCHNG interrupt.
. Read the USB_HPRT.PRTSPD field to get the enumerated speed.
10Program the USB_HFIR register with a value corresponding to the selected PHY clock. At this point,

the host is up and running and the port register begins to report device disconnects, etc. The port is
active with SOFs occurring down the enabled port.

11 Program the RXFSIZE register to select the size of the receive FIFO.

12 Program the NPTXFSIZE register to select the size and the start address of the Non-periodic Transmit
FIFO for non-periodic transactions.

13Program the USB_HPTXFSIZ register to select the size and start address of the Periodic Transmit
FIFO for periodic transactions.

© 0N o oA

To communicate with devices, the system software must initialize and enable at least one channel as
described in Device Initialization (p. 223) .

15.4.1.1.1 Host Connection
The following steps explain the host connection flow:

1. When the USB Cabile is plugged to the Host port, the core triggers USB_GINTSTS.CONIDSTSCHNG
interrupt.

2. When the Host application detects USB_GINTSTS.CONIDSTSCHNG interrupt, the application can
perform one of the following actions:
e Turn on VBUS by setting USB_HPRT.PRTPWR =1 or
» Wait for SRP Signaling from Device to turn on VBUS.
. The PHY indicates VBUS power-on by detecting a VBUS valid voltage level.
4. When the Host Core detects the device connection, it triggers the Host Port Interrupt
(USB_GINTSTS.PRTINT) to the application.

5. When USB_GINTSTS.PRTINT is triggered, the application reads the USB_HPRT register to check if
the Port Connect Detected (USB_HPRT.PRTCONNDET) bit is set or not.

w

15.4.1.1.2 Host Disconnection
The following steps explain the host disconnection flow:

1. When the Device is disconnected from the USB Cable (but the cable is still connected to the USB
host), the Core triggers USB_GINTSTS.DISCONNINT (Disconnect Detected) interrupt.

Note
If the USB cable is disconnected from the Host port without removing the device, the
core generates an additional interrupt - USB_GINTSTS.CONIDSTSCHNG (Connector ID
Status Change).

2. The Host application can choose to turn off the VBUS by programming USB_HPRT.PRTPWR = 0.

15.4.1.2 Device Initialization

The application must perform the following steps to initialize the core at device on, power on, or after
a mode change from Host to Device.

1. Program the following fields in USB_DCFG register.
» Device Speed
» Non-Zero-Length Status OUT Handshake

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

» Periodic Frame Interval

2. Program the USB_GINTMSK register to unmask the following interrupts.
* USB Reset
* Enumeration Done
» Early Suspend
* USB Suspend

3. Wait for the USB_GINTSTS.USBRST interrupt, which indicates a reset has been detected on the
USB and lasts for about 10 ms. On receiving this interrupt, the application must perform the steps
listed in Initialization on USB Reset (p. 257)

4. Wait for the USB_GINTSTS.ENUMDONE interrupt. This interrupt indicates the end of reset on the
USB. On receiving this interrupt, the application must read the USB_DSTS register to determine the
enumeration speed and perform the steps listed in Initialization on Enumeration Completion (p. 257)

At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint
0.

15.4.1.2.1 Device Connection

The device connect process varies depending on the if the VBUS is on or off when the device is
connected to the USB cable.

When VBUS is on When the Device is Connected

If VBUS is on when the device is connected to the USB cable, there is no SRP from the device. The
device connection flow is as follows:

1. The device triggers the USB_GINTSTS.SESSREQINT [bit 30] interrupt bit.
2. When the device application detects the USB_GINTSTS.SESSREQINT interrupt, it programs the
required bits in the USB_DCFG register.

3. When the Host drives Reset, the Device triggers USB_GINTSTS.USBRST [bit 12] on detecting the
Reset. The host then follows the USB 2.0 Enumeration sequence.

When VBUS is off When the Device is Connected

If VBUS is off when the device is connected to the USB cable, the device initiates SRP in OTG Revision
1.3 mode. The device connection flow is as follows:

1. The application initiates SRP by writing the Session Request bit in the OTG Control and Status
register. The core perform data-line pulsing followed by VBUS pulsing.

2. The host starts a new session by turning on VBUS, indicating SRP success. The core interrupts the
application by setting the Session Request Success Status Change bit in the OTG Interrupt Status
register.

3. The application reads the Session Request Success bit in the OTG Control and Status register and
programs the required bits in USB_DCFG register.

4. When Host drives Reset, the Device triggers USB_GINTSTS.USBRST on detecting the Reset. The
host then follows the USB 2.0 Enumeration sequence.

15.4.1.2.2 Device Disconnection
The device session ends when the USB cable is disconnected or if the VBUS is switched off by the Host.
The device disconnect flow is as follows:

1. When the USB cable is unplugged or when the VBUS is switched off by the Host, the Device core
trigger USB_GINTSTS.OTGINT [bit 2] interrupt bit.

2. When the device application detects USB_GINTSTS.OTGINT interrupt, it checks that the
USB_GOTGINT.SESENDDET (Session End Detected) bit is set to 1.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

15.4.1.2.3 Device Soft Disconnection

The application can perform a soft disconnect by setting the Soft disconnect bit (SFTDISCON) in Device
Control Register (USB_DCTL).

Send/Receive USB Transfers -> Soft disconnect->Soft reset->USB Device Enumeration

Sequence of operations:

1.
2.

w

The application configures the device to send or receive transfers.

The application sets the Soft disconnect bit (SFTDISCON) in the Device Control Register
(USB_DCTL).

. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).
. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset

is completed properly.

. Initialize the core according to the instructions in Device Initialization (p. 223) .

Suspend-> Soft disconnect->Soft reset->USB Device Enumeration

Sequence of operations:

1.
2.

The core detects a USB suspend and generates a Suspend Detected interrupt.

The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register, the core
puts the PHY in suspend mode, and the PHY clock stops.

. The application clears the Stop PHY Clock bit in the Power and Clock Gating Control register, and

waits for the PHY clock to come back. The core takes the PHY back to normal mode, and the PHY
clock comes back.

. The application sets the Soft disconnect bit (SFTDISCON) in Device Control Register (USB_DCTL).
. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).
. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset

is completed properly.

. Initialize the core according to the instructions in Device Initialization (p. 223) .

15.4.2 Modes of operation

Overview: DMA/Slave modes (p. 225)
DMA Mode (p. 225)
Slave Mode (p. 226)

15.4.2.1 Overview: DMA/Slave modes

The application can operate the core in either of two modes:

In DMA Mode (p. 225) - The core fetches the data to be transmitted or updates the received data
on the AHB.

In Slave Mode (p. 226) — The application initiates the data transfers for data fetch and store.

15.4.2.2 DMA Mode

In DMA Mode, the OTG host uses the AHB master Interface for transmit packet data fetch (AHB to
USB) and receive data update (USB to AHB). The AHB master uses the programmed DMA address
(USB_HCx_DMAADDR register in host mode and USB_DIEPx_DMAADDR/USB_DOEPx_DMAADDR
register in device mode) to access the data buffers.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

15.4.2.2.1 Transfer-Level Operation

In DMA mode, the application is interrupted only after the programmed transfer size is transmitted or
received (provided the core detects no NAK/Timeout/Error response in Host mode, or Timeout/CRC
Error in Device mode). The application must handle all transaction errors. In Device mode, all the USB
errors are handled by the core itself.

15.4.2.2.2 Transaction-Level Operation

This mode is similar to transfer-level operation with the programmed transfer size equal to one packet
size (either maximum packet size, or a short packet size).

15.4.2.3 Slave Mode

In Slave mode, the application can operate the core either in transaction-level (packet-level) operation
or in pipelined transaction-level operation.

15.4.2.3.1 Transaction-Level Operation

The application handles one data packet at a time per channel/endpoint in transaction-level operations.
Based on the handshake response received on the USB, the application determines whether to retry
the transaction or proceed with the next, until the end of the transfer. The application is interrupted on
completion of every packet. The application performs transaction-level operations for a channel/endpoint
for a transmission (host: OUT/device: IN) or reception (host: IN/device: OUT) as shown in Figure 15.8 (p.
227) and Figure 15.9 (p. 227) .

Host Mode

For an OUT transaction, the application enables the channel and writes the data packet into the
corresponding (Periodic or Non-periodic) transmit FIFO. The core automatically writes the channel
number into the corresponding (Periodic or Non-periodic) Request Queue, along with the last DWORD
write of the packet. For an IN transaction, the application enables the channel and the core automatically
writes the channel number into the corresponding Request queue. The application must wait for the
packet received interrupt, then empty the packet from the receive FIFO.

Device Mode

For an IN transaction, the application enables the endpoint, writes the data packet into the corresponding
transmit FIFO, and waits for the packet completion interrupt from the core. For an OUT transaction, the
application enables the endpoint, waits for the packet received interrupt from the core, then empties the
packet from the receive FIFO.

Note
The application has to finish writing one complete packet before switching to a different
channel/endpoint FIFO. Violating this rule results in an error.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR ...the world's most energy friendly wireless MCUs

Figure 15.8. Transmit Transaction-Level Operation in Slave Mode

Set up the
channel/endpoint B

!

Write 1 packet to the
Transmit FIFO

Get

Yes o

Rewrite packet to
the Transmit FIFO

L.

Get channel/endpoint
interrupt status

Retry
required?
No
Transfer
complete?

Yes

Figure 15.9. Receive Transaction-Level Operation in Slave Mode

(Start)

<
L

A

Set up the
Channel / endpoint

RXFLVL or
h/EP interrupt2

No

Yes

Read Receive
Status Queue No

No

v

Read the packet
from the
Receive FIFO

Transfer
complete?

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

15.4.2.3.2 Pipelined Transaction-Level Operation

The application can pipeline more than one transaction (IN or OUT) with pipelined transaction-level
operation, which is analogous to Transfer mode in DMA mode. In pipelined transaction-level operation,
the application can program the core to perform multiple transactions. The advantage of this mode
compared to transaction-level operation is that the application is not interrupted on a packet basis.

15.4.2.3.2.1 Host mode

For an OUT transaction, the application sets up a transfer and enables the channel. The application can
write multiple packets back-to-back for the same channel into the transmit FIFO, based on the space
availability. 1t can also pipeline OUT transactions for multiple channels by writing into the HCHARnN
register, followed by a packet write to that channel. The core writes the channel number, along with the
last DWORD write for the packet, into the Request queue and schedules transactions on the USB in
the same order.

For an IN transaction, the application sets up a transfer and enables the channel, and the core writes
the channel number into the Request queue. The application can schedule IN transactions on multiple
channels, provided space is available in the Request queue. The core initiates an IN token on the USB
only when there is enough space to receive at least of one maximum-packet-size packet of the channel
in the top of the Request queue.

15.4.2.3.2.2 Device mode

For an IN transaction, the application sets up a transfer and enables the endpoint. The application can
write multiple packets back-to-back for the same endpoint into the transmit FIFO, based on available
space. It can also pipeline IN transactions for multiple channels by writing into the USB_DIEPx_CTL
register followed by a packet write to that endpoint. The core writes the endpoint number, along with the
last DWORD write for the packet into the Request queue. The core transmits the data in the transmit
FIFO when an IN token is received on the USB.

For an OUT transaction, the application sets up a transfer and enables the endpoint. The core receives
the OUT data into the receive FIFO, when it has available space. As the packets are received into the
FIFO, the application must empty data from it.

From this point on in this chapter, the terms “Pipelined Transaction mode” and “Transfer mode” are used
interchangeably.

15.4.3 Host Programming Model

Before you program the Host, read Overview: Programming the Core (p. 222) and Modes of
operation (p. 225) .

This section discusses the following topics:

» Channel Initialization (p. 228)

« Halting a Channel (p. 229)

» Zero-Length Packets (p. 230)

» Handling Babble Conditions (p. 230)

» Handling Disconnects (p. 230)

» Host Programming Operations (p. 230)
» Writing the Transmit FIFO in Slave Mode (p. 231)
* Reading the Receive FIFO in Slave Mode (p. 232)

15.4.3.1 Channel Initialization

The application must initialize one or more channels before it can communicate with connected devices.
To initialize and enable a channel, the application must perform the following steps.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

1. Program the USB_GINTMSK register to unmask the following:
2. Channel Interrupt
» Non-periodic Transmit FIFO Empty for OUT transactions (applicable for Slave mode that operates
in pipelined transaction-level with the Packet Count field programmed with more than one).
» Non-periodic Transmit FIFO Half-Empty for OUT transactions (applicable for Slave mode that
operates in pipelined transaction-level with the Packet Count field programmed with more than one).
. Program the USB_USB_HAINTMSK register to unmask the selected channels’ interrupts.
4. Program the HCINTMSK register to unmask the transaction-related interrupts of interest given in the
Host Channel Interrupt register.
5. Program the selected channel's USB_HCx_TSIZ register.

w

Program the register with the total transfer size, in bytes, and the expected number of packets,
including short packets. The application must program the PID field with the initial data PID (to be
used on the first OUT transaction or to be expected from the first IN transaction).

6. Program the selected channels’ USB_HCx_DMAADDR register(s) with the buffer start address (DMA
mode only).

7. Program the USB_HCx_CHAR register of the selected channel with the device’s endpoint
characteristics, such as type, speed, direction, and so forth. (The channel can be enabled by setting
the Channel Enable bit to 1 only when the application is ready to transmit or receive any packet).

Repeat the above steps for other channels.

Note
De-allocate channel means after the transfer has completed, the channel is disabled. When
the application is ready to start the next transfer, the application re-initializes the channel by
following these steps.

15.4.3.2 Halting a Channel

The application can disable any channel by programming the USB_HCx_CHAR register with the
USB_HCx_CHAR.CHDIS and USB_HCx_CHAR.CHENA bits set to 1. This enables the host to flush
the posted requests (if any) and generates a Channel Halted interrupt. The application must wait for the
USB_HCx_INT.CHHLTD interrupt before reallocating the channel for other transactions. The host does
not interrupt the transaction that has been already started on USB.

In Slave mode operation, before disabling a channel, the application must ensure that there is at
least one free space available in the Non-periodic Request Queue (when disabling a non-periodic
channel) or the Periodic Request Queue (when disabling a periodic channel). The application can
simply flush the posted requests when the Request queue is full (before disabling the channel), by
programming the USB_HCx_CHAR register with the USB_HCx_CHAR.CHDIS bit set to 1, and the
USB_HCx_CHAR.CHENA bit reset to 0.

The core generates a RXFLVL interrupt when there is an entry in the queue. The application must read/
pop the USB_GRXSTSP register to generate the Channel Halted interrupt.

To disable a channel in DMA mode operation, the application need not check for space in the Request
gueue. The host checks for space in which to write the Disable request on the disabled channel's
turn during arbitration. Meanwhile, all posted requests are dropped from the Request queue when the
USB_HCx_CHAR.CHDIS bit is set to 1.

The application is expected to disable a channel under any of the following conditions:

1. When a USB_HCx_INT.XFERCOMPL interrupt is received during a non-periodic IN transfer or high-
bandwidth interrupt IN transfer (Slave mode only)

2. When a USB_HCx_INT.STALL, USB_HCx_INT.XACTERR, USB_HCx_INT.BBLERR, or
USB_HCx_INT.DATATGLERR interrupt is received for an IN or OUT channel (Slave mode only).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

For high-bandwidth interrupt INs in Slave mode, once the application has received a DATATGLERR
interrupt it must disable the channel and wait for a Channel Halted interrupt. The application must
be able to receive other interrupts (DATATGLERR, NAK, Data, XACTERR, BBLERR) for the same
channel before receiving the halt.

3. When a USB_GINTSTS.DISCONNINT (Disconnect Device) interrupt is received. The application
must check for the USB_HPRT.PRTCONNSTS, because when the device directly connected to the
host is disconnected, USB_HPRT.PRTCONNSTS is reset. The software must issue a soft reset to
ensure that all channels are cleared. When the device is reconnected, the host must issue a USB
Reset.

4. When the application aborts a transfer before normal completion (Slave and DMA modes).

Note
In DMA mode, keep the following guideline in mind:

¢ Channel disable must not be programmed for periodic channels. At the end of the next
frame (in the worst case), the core generates a channel halted and disables the channel
automatically.

15.4.3.3 Sending a Zero-Length Packet in Slave/DMA Modes
To send a zero-length data packet, the application must initialize an OUT channel as follows.

1. Program the USB_HCx_TSIZ register of the selected channel with a correct PID, XFERSIZE = 0,
and PKTCNT = 1.

2. Program the USB_HCx_CHAR register of the selected channel with CHENA = 1 and the device’s
endpoint characteristics, such as type, speed, and direction.

The application must treat a zero-length data packet as a separate transfer, and cannot combine it with
a non-zero-length transfer.

15.4.3.4 Handling Babble Conditions

The core handles two cases of babble: packet babble and port babble. Packet babble occurs if the device
sends more data than the maximum packet size for the channel. Port babble occurs if the core continues
to receive data from the device at EOF2 (the end of frame 2, which is very close to SOF).

When the core detects a packet babble, it stops writing data into the Rx buffer and waits for the end of
packet (EOP). When it detects an EOP, it flushes already-written data in the Rx buffer and generates
a Babble interrupt to the application.

When detects a port babble, it flushes the RxFIFO and disables the port. The core then generates a Port
Disabled Interrupt (USB_GINTSTS.PRTINT, USB_HPRT.PRTENCHNG). On receiving this interrupt,
the application must determine that this is not due to an overcurrent condition (another cause of the Port
Disabled interrupt) by checking USB_ HPRT.PRTOVRCURRACT, then perform a soft reset. The core
does not send any more tokens after it has detected a port babble condition.

15.4.3.5 Handling Disconnects

If the device is disconnected suddenly, a USB_GINTSTS.DISCONNINT interrupt is generated.
When the application receives this interrupt, it must issue a soft reset by programming the
USB_GRSTCTL.CSFTRST bit.

15.4.3.6 Host Programming Operations
Table 15.1 (p. 231) provides links to the programming sequence for the different types of USB
transactions.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

Table 15.1. Host Programming Operations

Mode IN OUT/SETUP

Control

Slave Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
Slave Mode (p. 235) Transactions in Slave Mode (p. 233)

DMA Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
DMA Mode (p. 241) Transactions in DMA Mode (p. 237)

Bulk

Slave Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
Slave Mode (p. 235) Transactions in Slave Mode (p. 233)

DMA Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
DMA Mode (p. 241) Transactions in DMA Mode (p. 237)

Interrupt

Slave Interrupt IN Transactions in Slave Interrupt OUT Transactions in Slave
Mode (p. 245) Mode (p. 243)

DMA Interrupt IN Transactions in DMA Interrupt OUT Transactions in DMA
Mode (p. 249) Mode (p. 247)

Isochronous

Slave Isochronous IN Transactions in Slave Isochronous OUT Transactions in Slave
Mode (p. 253) Mode (p. 251)

DMA Isochronous IN Transactions in DMA Isochronous OUT Transactions in DMA
Mode (p. 255) Mode (p. 254)

15.4.3.6.1 Writing the Transmit FIFO in Slave Mode

Figure 15.10 (p. 232) shows the flow diagram for writing to the transmit FIFO in Slave mode. The host
automatically writes an entry (OUT request) to the Periodic/Non-periodic Request Queue, along with the
last DWORD write of a packet. The application must ensure that at least one free space is available in
the Periodic/Non-periodic Request Queue before starting to write to the transmit FIFO. The application
must always write to the transmit FIFO in DWORDs. If the packet size is non-DWORD aligned, the
application must use padding. The host determines the actual packet size based on the programmed
maximum packet size and transfer size.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

Figure 15.10. Transmit FIFO Write Task in Slave Mode

(Start)
Read USB_GNPTXSTS/

USB_HPTXFSIZ registers
for available FIFO and
Queue spaces

...the world's most energy friendly wireless MCUs

Wait for
USB_GAHBCFG . NPTXFEMPLVL 1 MPS
or [N or LPS FIFO space os
USB_GAHBCFG , PTXFEMPLVL available?
interrupt

Yes

Write 1 packet
datato
Transmit FIFO

MPS: Max Packet Size
LPS: Last Packet Size

15.4.3.6.2 Reading the Receive FIFO in Slave Mode

Figure 15.11 (p. 232) shows the flow diagram for reading the receive FIFO in Slave mode. The
application must ignore all packet statuses other than IN Data Packet (Ob0010).

Figure 15.11. Receive FIFO Read Task in Slave Mode

(Start)

RXFLVL
Interrupt?

Yes

Unmask RXFLVL Mask RXFLVL Unmask RXFLVL
interrupt interrupt interrupt

I !

ot e
P USB_GRXSTSP

Receive FIFO
PKTSTS =
No——|
0b0010?

N

S

15.4.3.6.3 Control Transactions in Slave Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers.
Setup- Data- or Status-stage OUT transactions are performed similarly to the bulk OQUT transactions
explained in Bulk and Control OUT/SETUP Transactions in Slave Mode(p. 233) . Data- or Status-

stage IN transactions are performed similarly to the bulk IN transactions explained in Bulk and Control
IN Transactions in Slave Mode (p. 235) For all three stages, the application is expected to set the
USB_HC1 CHAR.EPTYPE field to Control. During the Setup stage, the application is expected to set
the USB_HC1_TSIZ.PID field to SETUP.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

15.4.3.6.4 Bulk and Control OUT/SETUP Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 228). See Figure 15.10 (p. 232) and
Figure 15.11 (p. 232) for Read or Write data to and from the FIFO in Slave mode.

A typical bulk or control OUT/SETUP pipelined transaction-level operation in Slave mode is shown in
Figure 15.12 (p. 234). See channel 1 (ch_1). Two bulk OUT packets are transmitted. A control SETUP
transaction operates the same way but has only one packet. The assumptions are:

» The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).

» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
* The Non-periodic Request Queue depth = 4.

15.4.3.6.4.1 Normal Bulk and Control OUT/SETUP Operations

The sequence of operations in Figure 15.12 (p. 234) (channel 1) is as follows:

1. Initialize channel 1 as explained in Channel Initialization (p. 228) .

2. Write the first packet for channel 1.

3. Along with the last DWORD write, the core writes an entry to the Non-periodic Request Queue.

4. As soon as the non-periodic queue becomes non-empty, the core attempts to send an OUT token
in the current frame.

5. Write the second (last) packet for channel 1.

6. The core generates the XFERCOMPL interrupt as soon as the last transaction is completed

successfully.
7. In response to the XFERCOMPL interrupt, de-allocate the channel for other transfers.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

Figure 15.12. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in Slave Mode

Application AHB Host USB Device
| | |
[T | | |
init reg(ch_2) 0 \: : Non- Peéiodic Request
- - | | ueue
te tx_fif
wr;ceﬁ);__)I Assume that this queue cal
— : hold 4 entries.
|
|
|
|

8

|

(ch_1)

= ———— —F —————

set_ch_en]
(ch_2)
v -
write tx_fif
set_ch_en
(ch_2)

y
set_ch_en
(ch_2)

N e

o
3
I3

RXFLVL interrupt

\
\
\
\
_b_____

-
———
-

read rx_sts
read rx_fifol 1 ou |
] ch_2 T\’.
|
e ! ch_2 DATAL
2 | ! MPS
|
] | ch_2 |
| | |
| | |
| XFERCOMPL interrupt | :<_/‘ ACK’/_:
-="1] — |
De-allocate : : : IN\J
(ch_1) \ | H
| | |
| |
| |
| | DATA1
| RXFLVL interrupt]
-
———— - |
= I ack
read_rx_stsrg T

ad_rx_fifo

RXFLVL interrupt

I XFERCOMPL interrupt

I —
CHHLTD interrupt @
—-_

———

o
I:‘
N

————
—_———

15.4.3.6.4.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in Slave
mode is shown in the following code samples.

Interrupt Service Routine for Bulk/Control OUT/SETUP Transactions in Slave Mode

Bulk/Control OUT/SETUP

Unmask (NAK/ XACTERR/ STALL/ XFERCOVPL)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

De- al | ocat e Channel

}
else if (STALL)

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

{

Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel

}
else if (NAK or XACTERR)
{
Rewi nd Buffer Pointers
Unmask CHHLTD
Di sabl e Channel
i f (XACTERR)
{
I ncrenment Error Count
Unmask ACK

}

el se

{
}

}
else if (CHHLTD)
{

Reset Error Count

Mask CHHLTD
if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel

Reset Error Count
Mask ACK

The application is expected to write the data packets into the transmit FIFO when space is available in the
transmit FIFO and the Request queue. The application can make use of USB_GINTSTS.NPTXFEMP
interrupt to find the transmit FIFO space.

The application is expected to write the requests as and when the Request queue space is available
and until the XFERCOMPL interrupt is received.

15.4.3.6.5 Bulk and Control IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 228). See Figure 15.10 (p. 232) and
Figure 15.11 (p. 232) for read or write data to and from the FIFO in Slave mode.

A typical bulk or control IN pipelined transaction-level operation in Slave mode is shown in
Figure 15.12 (p. 234) . See channel 2 (ch_2). The assumptions are:

1. The application is attempting to receive two maximum-sized packets (transfer size = 1,024 bytes).

2. The receive FIFO can contain at least one maximum-packet-size packet and two status DWORDs
per packet (72 bytes for FS).

3. The Non-periodic Request Queue depth = 4.

15.4.3.6.5.1 Normal Bulk and Control IN Operations

The sequence of operations in Figure 15.12 (p. 234) is as follows:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

. Initialize channel 2 as explained in Channel Initialization (p. 228) .

. Setthe USB_HC2_CHAR.CHENA bit to write an IN request to the Non-periodic Request Queue.

. The core attempts to send an IN token after completing the current OUT transaction.

. The core generates an RXFLVL interrupt as soon as the received packet is written to the receive FIFO.

. Inresponse to the RXFLVL interrupt, mask the RXFLVL interrupt and read the received packet status

to determine the number of bytes received, then read the receive FIFO accordingly. Following this,
unmask the RXFLVL interrupt.

6. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO.

7. The application must read and ignore the receive packet status when the receive packet status is not

an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

. The core generates the XFERCOMPL interrupt as soon as the receive packet status is read.

9. In response to the XFERCOMPL interrupt, disable the channel (see Halting a Channel (p. 229))
and stop writing the USB_HC2_CHAR register for further requests. The core writes a channel disable
request to the non-periodic request queue as soon as the USB_HC2_CHAR register is written.

10The core generates the RXFLVL interrupt as soon as the halt status is written to the receive FIFO.

11Read and ignore the receive packet status.

12The core generates a CHHLTD interrupt as soon as the halt status is popped from the receive FIFO.

13In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

ga b wN P

(o]

Note
For Bulk/Control IN transfers, the application must write the requests when the Request
gueue space is available, and until the XFERCOMPL interrupt is received.

15.4.3.6.5.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control IN transactions in Slave mode is shown
in the following code samples.

Interrupt Service Routine for Bulk/Control IN Transactions in Slave Mode

Unmask (XACTERR/ XFERCOWPL/ BBLERR/ STALL/ DATATGLERR)
i f (XFERCOWPL)
{

Reset Error Count

Unmask CHHLTD

Di sabl e Channel

Reset Error Count

Mask ACK

}
el se if (XACTERR or BBLERR or STALL)

{
Unmask CHHLTD

Di sabl e Channel
i f (XACTERR)
{

I ncrement Error Count
Unmask ACK

}
}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

De- al | ocat e Channel

Re-initialize Channel

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ L F ...the world's most energy friendly wireless MCUs

}
else if (ACK)
{

Reset Error Count
Mask ACK

el se if (DATATGLERR)
{

}

Reset Error Count

15.4.3.6.6 Control Transactions in DMA Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers.
Setup- and Data- or Status-stage OUT transactions are performed similarly to the bulk OUT transactions
explained in Bulk and Control OUT/SETUP Transactions in DMA Mode(p. 237) . Data- or Status-

stage IN transactions are performed similarly to the bulk IN transactions explained in Bulk and Control
IN Transactions in DMA Mode (p. 241) . For all three stages, the application is expected to set the
USB_HC1 CHAR.EPTYPE field to Control. During the Setup stage, the application is expected to set
the USB_HC1_TSIZ.PID field to SETUP.

15.4.3.6.7 Bulk and Control OUT/SETUP Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

This section discusses the following topics:

* Overview (p. 237)

* Normal Bulk and Control OUT/SETUP Operations (p. 237)
* NAK Handling with DMA (p. 237)

» Handling Interrupts (p. 239)

15.4.3.6.7.1 Overview

« The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).
» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
* The Non-periodic Request Queue depth = 4.

15.4.3.6.7.2 Normal Bulk and Control OUT/SETUP Operations
The sequence of operations in Figure 15.12 (p. 234) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 228) .

2. The host starts fetching the first packet as soon as the channel is enabled. For DMA mode, the host
uses the programmed DMA address to fetch the packet.

3. After fetching the last DWORD of the second (last) packet, the host masks channel 1 internally for
further arbitration.

4. The host generates a CHHLTD interrupt as soon as the last packet is sent.

5. In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA
mode is shown in Handling Interrupts (p. 239) .

15.4.3.6.7.3 NAK Handling with DMA

1. The Host sends a Bulk OUT Transaction.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

-_ N ®
E A F ...the world's most energy friendly wireless MCUs

N

. The Device responds with NAK.

3. If the application has unmasked NAK, the core generates the corresponding interrupt(s) to the
application.

The application is not required to service these interrupts, since the core takes care of rewinding of
buffer pointers and re-initializing the Channel without application intervention.
4. When the Device returns an ACK, the core continues with the transfer.

Optionally, the application can utilize these interrupts. If utilized by the application:

» The NAK interrupt is masked by the application.
» The core does not generate a separate interrupt when NAK is received by the Host functionality.

Application Programming Flow

1. The application programs a channel to do a bulk transfer for a particular data size in each transaction.
» Packet Data size can be up to 512 KBytes
» Zero-length data must be programmed as a separate transaction.
2. Program the transfer size register with:
» Transfer size
» Packet Count
3. Program the DMA address.
4. Program the USB_HCx_CHAR to enable the channel.
5. The Interrupt handling by the application is as depicted in the flow diagram.

Note
The NAK interrupts are still generated internally. The application can mask off these
interrupts from reaching it. The application can use these interrupts optionally.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

...the world's most energy friendly wireless MCUs

Figure 15.13. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in DMA Mode

Application AHB Host USB Device
[} | | |
init reg(ch_1) : : :
init reg(ch_2) \: : Non- Peéiodic Request:
ueue
1 ,{”' Assume that this queue c%n
MPS . 1 hold 4 entries. H
[} .t | |
| |
Oy ‘
1 | |
ch_2
MPS - — :
: ch_1 :
] [}
1 | ch_2
[} |
[} |
] [}
[} |
[} |
[} |
[} |
[} |
[} |
] [}
[} |
[} |
[} |
| [}
[} |
[}
i
ch_1
] ch_2
|
: : ch_2
]] ch_2]
i i i
L CHHLTD interrupt ! :</ ACk— |
1 1 —
De- allocate ! ! ! 1
[} | |
(ch_1) | | |
] [} [}
[} | |
[} |
[} |
[} |
[}
[}

I CHHLTD interrupt l/(:

—— -
—_———

-

De-allocate|
(ch_2)

15.4.3.6.7.4 Handling Interrupts

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA
mode is shown in the following code samples.

www.silabs.com

2015-01-13 - EZR32LG Family - d0333_Rev0.90

®
t 2 R ...the world's most energy friendly wireless MCUs

Figure 15.14. Interrupt Service Routine for Bulk/Control OUT Transaction in DMA Mode

Start

A4

Unmasked the required
USB_HAINTMSK and
USB HCx_INTMSK status
bits

Read USB HAINT to
determine the channel

which caused the
Interrupt and read the
corresponding USB HCx_INT

USB_HCx_INT.
CHHLTD = 1 2

Yes,
| USB_HCx_INT.STALL = 1 or
| USB_HCx_INT.XFERCOMPL = 1

| ~
~
~

I
Yes, ~
USB HCxX_INT.XACTERR = 1 S
1. Reset Err_cnt
2. Deallocate

channel

Service based on the
other interrupt status
bits namely: AHBERR,
FRMOVRERR, Reset Err_cnt
BBLERR and

DATATGLERR
Yes
1. Brcent=1
Err_cnt = 2. Re-initialize
Err cnt +1 channel
3. Reprogram

Buffer pointers

o No
1. Reprogram
Buffer pointers
2. Re-initialize
Channel Yes
Y
Deallocate
Channel

In Figure 15.14 (p. 240) that the Interrupt Service Routine is not required to handle NAK responses.
This is the difference of proposed flow with respect to current flow. Similar flow is applicable for Control
flow also.

The NAK status bits in USB_HCx_INT registers are updated. The application can unmask these
interrupts when it requires the core to generate an interrupt for NAK. The NAK status is updated because
during Xact_err scenarios, this status provides a means for the application to determine whether the
Xact_err occurred three times consecutively or there were NAK responses in between two Xact_err.
This provides a mechanism for the application to reset the error counter accordingly. The application

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

must read the NAK/ACK along with the xact_err. If NAK/ACK is not set, the Xact_err count must be
incremented otherwise application must initialize the Xact_err count to 1.

Bulk/Control OUT/SETUP

Unmask (CHHLTD)
i f (CHHLTD)
{
i f (XFERCOWPL or STALL)
{
Reset Error Count (Error_count=1)
Mask ACK
De-al | ocat e Channel

}
el se i f (XACTERR)
{
i f (NAK/ ACK)
{
Error_count =1
Re-initialize Channel
Rewi nd Buffer Pointers

}

el se

{

Error_count = Error_count + 1
if (Error_count == 3)

{
}

el se

{

De al |l ocat e channel

Re-initialize Channel
Rewi nd Buffer Pointers

}

}
else if (ACK)
{

Reset Error Count (Error_count=1)
Mask ACK

As soon as the channel is enabled, the core attempts to fetch and write data packets, in multiples of
the maximum packet size, to the transmit FIFO when space is available in the transmit FIFO and the
Request queue. The core stops fetching as soon as the last packet is fetched.

15.4.3.6.8 Bulk and Control IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

A typical bulk or control IN operation in DMA mode is shown in Figure 15.13 (p. 239) . See channel
2 (ch_2).

The assumptions are:

1. The application is attempting to receive two maximum-packet-size packets (transfer size = 1,024
bytes).

2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (72 bytes for FS).

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

3.

The Non-periodic Request Queue depth = 4.

15.4.3.6.8.1 Normal Bulk and Control IN Operations

The sequence of operations in Figure 15.13 (p. 239) is as follows:

1.
2.

Initialize and enable channel 2 as explained in Channel Initialization (p. 228) .
The host writes an IN request to the Request queue as soon as channel 2 receives the grant from
the arbiter. (Arbitration is performed in a round-robin fashion, with fairness.).

. The host starts writing the received data to the system memory as soon as the last byte is received

with no errors.

. When the last packet is received, the host sets an internal flag to remove any extra IN requests from

the Request queue.

. The host flushes the extra requests.
. The final request to disable channel 2 is written to the Request queue. At this point, channel 2 is

internally masked for further arbitration.

. The host generates the CHHLTD interrupt as soon as the disable request comes to the top of the

queue.

. In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

15.4.3.6.8.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control IN transactions in DMA mode is shown
in the following flow:

Interrupt Service Routines for Bulk/Control Bulk/Control IN Transactions in DMA Mode

Bulk/Control IN

Unmask (CHHLTD)
if (CHHLTD)

{

i f (XFERCOWPL or STALL or BBLERR)

{
Reset Error Count Mask ACK De-al | ocate Channel

}
else if (XACTERR)
{

if (Error_count == 2)

{
}

el se

{

De- al | ocat e Channel

Unmask ACK

Unmask NAK

Unmask DATATGLERR

I ncrenment Error

Count Re-initialize Channel

}

}
else if (ACK or NAK or DATATGLERR)

{

Reset Error Count
Mask ACK
Mask NAK
Mask DATATGLERR

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

—_ A F ...the world's most energy friendly wireless MCUs

15.4.3.6.9 Interrupt OUT Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 228). See Figure 15.10 (p. 232) and
Figure 15.11 (p. 232) for read or write data to and from the FIFO in Slave mode.

A typical interrupt OUT operation in Slave mode is shown in Figure 15.15 (p. 244) . See channel 1
(ch_1). The assumptions are:

» The application is attempting to send one packet in every frame (up to 1 maximum packet size),
starting with the odd frame (transfer size = 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet.

* Periodic Request Queue depth = 4.

15.4.3.6.9.1 Normal Interrupt OUT Operation
The sequence of operations in Figure 15.15 (p. 244) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 228). The application must
set the USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth interrupt transfer, the application must write
the subsequent packets up to MC (maximum number of packets to be transmitted in the next frame
times before switching to another channel).

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request

Queue.

. The host attempts to send an OUT token in the next (odd) frame.

. The host generates an XFERCOMPL interrupt as soon as the last packet is transmitted successfully.

6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

(G20~

15.4.3.6.9.2 Handling Interrupts

The channel-specific interrupt service routine for Interrupt OUT transactions in Slave mode is shown in
the following flow:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZ R ...the world's most energy friendly wireless MCUs

Figure 15.15. Normal Interrupt OUT/IN Transactions in Slave Mode

Application AHB Host USB Device
1 |
1 1

|
s | ! !
init reg(ch_2)] Periodic Request Queuq
%, Assume that this queuq
can hold4 entries]

. |

|

|

|

|

|

|

|

|

|

write tx_fifol !
(ch_1)
set_ch_en
(cl

h_2)

——————————d)

JRo

XFERCOMPL interrupt

<
BI—‘

RXFLVL interrupt]

read |
read_| 1
MPS

RXFLVL interrupt

|i|§
i
|
|
|
|
4--
J/
j

|
|
|
|

XFERCOMPL interrupt

————

S
=
L

I

.

A

XFERCOMPL interrupt

T

|

write tx_fifol
(ch_1)

DATA1

Interrupt Service Routine for Interrupt OUT Transactions in Slave Mode

Interrupt OUT

Unmask (NAK/ XACTERR/ STALL/ XFERCOVPL/ FRMOVRUN)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

De- al | ocat e Channel

}
else if (STALL or FRMOVRUN)
{

Mask ACK

Unmask CHHLTD

Di sabl e Channel

i f (STALL)

{

}

Transfer Done = 1

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

}
else if (NAK or XACTERR)
{

Rewi nd Buffer Pointers
Reset Error Count
Mask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel (in next b_interval - 1 Frane)

Reset Error Count
Mask ACK

The application is expected to write the data packets into the transmit FIFO when the space is available
in the transmit FIFO and the Request queue up to the count specified in the MC field before switching
to another channel. The application uses the USB_GINTSTS.NPTXFEMP interrupt to find the transmit
FIFO space.

15.4.3.6.10 Interrupt IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228). See Transmit FIFO Write Task in Slave Mode
and Receive FIFO Read Task in Slave Mode for read or write data to and from the FIFO in Slave mode.

A typical interrupt-IN operation in Slave mode is shown in Figure 15.15 (p. 244). See channel 2 (ch_2).
The assumptions are:

1. The application is attempting to receive one packet (up to 1 maximum packet size) in every frame,
starting with odd. (transfer size = 1,024 bytes).

2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,031 bytes for FS).

3. Periodic Request Queue depth = 4.

15.4.3.6.10.1 Normal Interrupt IN Operation
The sequence of operations in Figure 15.15 (p. 244) (channel 2) is as follows:

1. Initialize channel 2 as explained in Channel Initialization (p. 228) . The application must set the
USB_HC2_CHAR.ODDFRM bit.

2. Set the USB_HC2_CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For
a high-bandwidth interrupt transfer, the application must write the USB_HC2_CHAR register MC
(maximum number of expected packets in the next frame) times before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_CHAR register
write with a CHENA bit set.

4. The host attempts to send an IN token in the next (odd) frame.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A F ...the world's most energy friendly wireless MCUs

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL
interrupt.

6. Inresponse to the RXFLVL interrupt, read the received packet status to determine the number of bytes
received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt
before reading the receive FIFO, and unmask after reading the entire packet.

7. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO.
The application must read and ignore the receive packet status when the receive packet status is not
an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

8. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB HC2 TSIZ.PKTCNT field. If
USB_HC2 TSIZ.PKTCNT != 0, disable the channel (as explained in Halting a Channel (p. 229)
) before re-initializing the channel for the next transfer, if any). If USB_HC2_ TSIZ.PKTCNT ==
0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

15.4.3.6.10.2 Handling Interrupts
The channel-specific interrupt service routine for an interrupt IN transaction in Slave mode is a follows.

Interrupt IN

Unmask (NAK/ XACTERR/ XFERCOWPL/ BBLERR/ STALL/ FRMOVRUN DATATGLERR)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

i f (USB_HCx_TSI Z. PKTCNT == 0)

{

}

el se

{

De- al | ocat e Channel

Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel
}
}
else if (STALL or FRMOVRUN or NAK or DATATGLERR or BBLERR)
{
Mask ACK
Unmask CHHLTD
Di sabl e Channel
if (STALL or BBLERR)
{
Reset Error Count
Transfer Done = 1
}
else if (! FRMOVRUN)
{

}
}
else if (XACTERR)
{

Reset Error Count

I ncrement Error Count
Unmask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel (in next b_interval - 1 Frane)

Reset Error Count
Mask ACK

The application is expected to write the requests for the same channel when the Request queue space
is available up to the count specified in the MC field before switching to another channel (if any).

15.4.3.6.11 Interrupt OUT Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

A typical interrupt OUT operation in DMA mode is shown in Figure 15.16 (p. 248) . See channel 1
(ch_1). The assumptions are:

» The application is attempting to transmit one packet in every frame (up to 1 maximum packet size
of 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB for FS).
» Periodic Request Queue depth = 4.

15.4.3.6.11.1 Normal Interrupt OUT Operation

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 228) .

2. The host starts fetching the first packet as soon the channel is enabled and writes the OUT request
along with the last DWORD fetch. In high-bandwidth transfers, the host continues fetching the next
packet (up to the value specified in the MC field) before switching to the next channel.

. The host attempts to send the OUT token in the beginning of the next odd frame.

. After successfully transmitting the packet, the host generates a CHHLTD interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

AW

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZ R ...the world's most energy friendly wireless MCUs

Figure 15.16. Normal Interrupt OUT/IN Transactions in DMA Mode

Application AHB Host uUsB Device
|

1
init reg(ch_1) '\J
init reg(ch_2) I\H

[}

|

: Periodic Request

| Queue

|.-°| Assume that this

] queue can hold

ot | 4 entries

\

|

|

|

|

|

o

|
|
|
T
|
|
|
|
|
[}
|
|
[}
|
|
|
|
|
|
|
[V I,

1e CHHLTD interrupt

-t

A -
init_reg(ch_1)

1
MPS
| DATAO
[}
[} [}
[} [}
¢ !
1 K\N
MPS

CHHLTD interrupt

- ——

init_reg(ch_2)

]
S P

/

o

=
|

=

|

CHHLTD interrupt

gl RS R,

init_reg(ch_l)

e i e S

DATA1

15.4.3.6.11.2 Handling Interrupts

The following code sample shows the channel-specific ISR for an interrupt OUT transaction in DMA
mode.

Interrupt OUT

Unmask (CHHLTD)
i f (CHHLTD)
{
i f (XFERCOWPL)
{
Reset Error Count
Mask ACK
if (Transfer Done)

{
}

el se

{

De-al | ocat e Channe

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A ‘ ' ...the world's most energy friendly wireless MCUs

Re-initialize Channel (in next b_interval - 1 Frane)

}

el se i f (STALL)

{
Transfer Done = 1
Reset Error Count
Mask ACK
De- al | ocat e Channel

}
else if (NAK or FRMOVRUN)

{
Mask ACK

Rewi nd Buffer Pointers

Re-initialize Channel (in next b_interval - 1 Frane)
i f (NAK)

{

}

else if (XACTERR)
{

Reset Error Count

if (Error_count == 2)

{
}

el se

{

De- al | ocat e Channel

I ncrenment Error Count

Rewi nd Buffer Pointers

Unmask ACK

Re-initialize Channel (in next b_interval - 1 Frane)

}

else if (ACK)
{

Reset Error Count
Mask ACK

As soon as the channel is enabled, the core attempts to fetch and write data packets, in maximum
packet size multiples, to the transmit FIFO when the space is available in the transmit FIFO and the
Request queue. The core stops fetching as soon as the last packet is fetched (the number of packets
is determined by the MC field of the USB_HCx_CHAR register).

15.4.3.6.12 Interrupt IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

A typical interrupt IN operation in DMA mode is shown in Figure 15.16 (p. 248). See channel 2 (ch_2).
The assumptions are:

» The application is attempting to receive one packet in every frame (up to 1 maximum packet size of
1,024 bytes).

* The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,032 bytes for FS).

» Periodic Request Queue depth = 4.

15.4.3.6.12.1 Normal Interrupt IN Operation

The sequence of operations in Figure 15.16 (p. 248) (channel 2) is as follows:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t 2 R ...the world's most energy friendly wireless MCUs

1. Initialize and enable channel 2 as explained in Channel Initialization (p. 228) .

2. The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from
the arbiter (round-robin with fairness). In high-bandwidth transfers, the host writes consecutive writes
up to MC times.

3. The host attempts to send an IN token at the beginning of the next (odd) frame.

4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD
interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

15.4.3.6.12.2 Handling Interrupts

The channel-specific interrupt service routine for Interrupt IN transactions in DMA mode is as follows.

Interrupt Service Routine for Interrupt IN Transactions in DMA Mode

Unmask (CHHLTD)
if (CHHLTD)
{
i f (XFERCOWPL)

{
Reset Error Count

Mask ACK
if (Transfer Done)
{
De- al | ocat e Channel
}
el se
{
Re-initialize Channel (in next b_interval - 1 Frane)
}

}
else if (STALL or BBLERR)

{
Reset Error Count

Mask ACK
De- al | ocat e Channel

}
else if (NAK or DATATGERR or FRMOVRUN)

{
Mask ACK

Re-initialize Channel (in next b_interval - 1 Frane)
i f (DATATGLERR or NAK)

{
}

}
else if (XACTERR)
{

Reset Error Count

if (Error_count == 2)

{
}

el se

{

De- al | ocat e Channel

I ncrement Error Count
Unmask ACK
Re-initialize Channel (in next b_interval - 1 Frang)

}

}

else if (ACK)

{
Reset Error Count
Mask ACK

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L ’: ...the world's most energy friendly wireless MCUs

As soon as the channel is enabled, the core attempts to write the requests into the Request queue when
the space is available up to the count specified in the MC field.

15.4.3.6.13 Isochronous OUT Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 228). See TFigure 15.10 (p. 232) and
Figure 15.11 (p. 232) for read or write data to and from the FIFO in Slave mode.

A typical isochronous OUT operation in Slave mode is shown in Figure 15.17 (p. 252) . See channel
1 (ch_1). The assumptions are:

» The application is attempting to send one packet every frame (up to 1 maximum packet size), starting
with an odd frame. (transfer size = 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB).
» Periodic Request Queue depth = 4.

15.4.3.6.13.1 Normal Isochronous OUT Operation
The sequence of operations in Figure 15.17 (p. 252) (channel 1) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 228). The application must
set the USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth isochronous transfer, the application must
write the subsequent packets up to MC (maximum number of packets to be transmitted in the next
frame) times before switching to another channel.

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request
Queue.

4. The host attempts to send the OUT token in the next frame (odd).
. The host generates the XFERCOMPL interrupt as soon as the last packet is transmitted successfully.
6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

62

15.4.3.6.13.2 Handling Interrupts

The channel-specific interrupt service routine for isochronous OUT transactions in Slave mode is shown
in the following flow:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZ R ...the world's most energy friendly wireless MCUs

Figure 15.17. Normal Isochronous OUT/IN Transactions in Slave Mode

>
I
w

Host USB Device

| |

| |

: Periodic Requests :

| Queue 1
.47 Asume that this queue |
‘‘‘‘‘ [} can hold 4 entries. :
|

|

|

|

|

|

|

Application

[[mereatcn 2] |
init_reg(ch_2)
0 write tx_fif
(ch_1)
A
set_ch_en
(ch_2)

|

———mm ==

©

——————— 4

A

XFERCOMPL interrupt

\
=

init reg(ch_1) I

read rx_sts
read rx_fifo|

e ————

write tx_fifo
(ch_1)

Interrupt Service Routine for Isochronous OUT Transactions in Slave Mode

Isochronous OUT

Unmask (FRMOVRUN/ XFERCOVPL)
i f (XFERCOMPL)
{

De- al | ocat e Channe

}
else if (FRMOVRUN)

{
Unmask CHHLTD

Di sabl e Channe

}
else if (CHHLTD)

{
Mask CHHLTD

De- al | ocat e Channe

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

15.4.3.6.14 Isochronous IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 228). See Figure 15.10 (p. 232) and
Figure 15.11 (p. 232) for read or write data to and from the FIFO in Slave mode.

A typical isochronous IN operation in Slave mode is shown in Figure 15.17 (p. 252) . See channel 2
(ch_2). The assumptions are:

» The application is attempting to receive one packet (up to 1 maximum packet size) in every frame
starting with the next odd frame. (transfer size = 1,024 bytes).

* The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,031 bytes for FS).

» Periodic Request Queue depth = 4.

15.4.3.6.14.1 Normal Isochronous IN Operation
The sequence of operations in Figure 15.17 (p. 252) (channel 2) is as follows:

1. Initialize channel 2 as explained in Channel Initialization (p. 228) . The application must set the
USB_HC2_CHAR.ODDFRM bhit.

2. Set the USB_HC2_ CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For a
high-bandwidth isochronous transfer, the application must write the USB_HC2_CHAR register MC
(maximum number of expected packets in the next frame) times before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_ CHAR register
write with the CHENA bit set.

. The host attempts to send an IN token in the next odd frame.

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL

interrupt.

6. Inresponse to the RXFLVL interrupt, read the received packet status to determine the number of bytes
received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt
before reading the receive FIFO, and unmask it after reading the entire packet.

7. The core generates an RXFLVL interrupt for the transfer completion status entry in the receive FIFO.
This time, the application must read and ignore the receive packet status when the receive packet
status is not an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB_HC2_TSIZ.PKTCNT field. If
USB_HC2_TSIZ.PKTCNT != 0, disable the channel (as explained in Halting a Channel (p. 229)
) before re-initializing the channel for the next transfer, if any. If USB_HC2_TSIZ.PKTCNT ==
0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

N

(o]

15.4.3.6.14.2 Handling Interrupts

The channel-specific interrupt service routine for an isochronous IN transaction in Slave mode is as
follows.

Isochronous IN

Unmask (XACTERR/ XFERCOWPL/ FRMOVRUN BBLERR)
i f (XFERCOMPL or FRMOVRUN)

{
i f (XFERCOMPL and (USB_HCx_TSI Z. PKTCNT == 0))

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— A F ...the world's most energy friendly wireless MCUs

{

Reset Error Count
De- al | ocat e Channel

}

el se

{
Unmask CHHLTD

Di sabl e Channel

}

}
el se if (XACTERR or BBLERR)
{

I ncrenment Error Count
Unmask CHHLTD
Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

De-al | ocat e Channel

Re-initialize Channel

15.4.3.6.15 Isochronous OUT Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

A typical isochronous OUT operation in DMA mode is shown in Figure 15.18 (p. 255). See channel
1 (ch_1). The assumptions are:

» The application is attempting to transmit one packet every frame (up to 1 maximum packet size of
1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB).

» Periodic Request Queue depth = 4.

15.4.3.6.15.1 Normal Isochronous OUT Operation

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 228) .

2. The host starts fetching the first packet as soon as the channel is enabled, and writes the OUT request
along with the last DWORD fetch. In high-bandwidth transfers, the host continues fetching the next
packet (up to the value specified in the MC field) before switching to the next channel.

. The host attempts to send an OUT token in the beginning of the next (odd) frame.

. After successfully transmitting the packet, the host generates a CHHLTD interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

AW

15.4.3.6.15.2 Handling Interrupts

The channel-specific interrupt service routine for Isochronous OUT transactions in DMA mode is shown
in the following flow:

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

®
t Z R ...the world's most energy friendly wireless MCUs

Figure 15.18. Normal Isochronous OUT/IN Transactions in DMA Mode

Application AHB Host USB Device
|
1
i

init reg(ch_1)
init_reg(ch_2)

|
|
: Periodic Request
\ Queue
4
|

°/

«| Assume that this
queue can hold
| 4 entries

o)

|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e
|
|
|
|
|
|
|
|
|
|
|
|
T

P CHHLTD interrupt
P
init reg(ch_1) !

———
1
MPS
[}
[} [}
| |
| i i
1 1 1
MPS [} [}
[} [} [}
[} [} [}
[} [} [} [}
[} [} [} [}
i i C i i
| CHHLTD interrupt | ch 1 : :
__________ T) | ch_2 | |
init_reg(ch_2) :\4 : :
[} [} [}
[} [} [}
[} [} [} [}
[} [} [}
T ------------ :- ----------- S :--Even
! ! S o ! frame
1 1 UT\4
i i
| H DATAO
L CHHLTD interrupt : MPS
D 1 1
init reg(ch_1) : =\
! W\N
[}
[}
[}
DATAO

Interrupt Service Routine for Isochronous OUT Transactions in DMA Mode

Isochronous OUT

Unmask (CHHLTD)
i f (CHHLTD)

i f (XFERCOWPL or FRMOVRUN)

De-al | ocat e Channel

15.4.3.6.16 Isochronous IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 228) .

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

i A ‘ ' ...the world's most energy friendly wireless MCUs

A typical isochronous IN operation in DMA mode is shown in Figure 15.18 (p. 255) . See channel 2
(ch_2). The assumptions are:

» The application is attempting to receive one packet in every frame (up to 1 maximum packet size of
1,024 bytes).

« The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDS per
packet (1,031 bytes).

» Periodic Request Queue depth = 4.

15.4.3.6.16.1 Normal Isochronous IN Operation
The sequence of operations in Figure 15.18 (p. 255) (channel 2) is as follows:

1. Initialize and enable channel 2 as explained in Channel Initialization (p. 228) .
2. The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from the

arbiter (round-robin with fairness). In high-bandwidth transfers, the host performs consecutive writes
up to MC times.

. The host attempts to send an IN token at the beginning of the next (odd) frame.

4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD
interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

w

15.4.3.6.16.2 Handling Interrupts

The channel-specific interrupt service routine for an isochronous IN transaction in DMA mode is as
follows.

Isochronous IN

Unmask (CHHLTD)
i f (CHHLTD)

i f (XFERCOMPL or FRMOVRUN)

i f (XFERCOWPL and (USB_HCx_TSI Z. PKTCNT == 0))
{

Reset Error Count
De- al | ocat e Channel

}

el se

De-al | ocat e Channel

}

}
else if (XACTERR or BBLERR)
if (Error_count == 2)

De-al | ocat e Channel

}

el se

{

I ncrement Error Count
Re- enabl e Channel (in next b_interval - 1 Frane)

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

15.4.4 Device Programming Model

Before you program the Device, be sure to read Overview: Programming the Core (p. 222) and Modes
of operation (p. 225)

15.4.4.1 Endpoint Initialization
This section addresses the following topics:

« Initialization on USB Reset (p. 257)

* Initialization on Enumeration Completion (p. 257)

« Initialization on SetAddress Command (p. 258)

« Initialization on SetConfiguration/Setinterface Command (p. 258)
« Endpoint Activation (p. 258)

» Endpoint Deactivation (p. 258)

» Device DMA/Slave Mode Initialization (p. 259)

15.4.4.1.1 Initialization on USB Reset

1. Set the NAK bit for all OUT endpoints
* USB_DOEPx_CTL.SNAK =1 (for all OUT endpoints)
2. Unmask the following interrupt bits:
 USB_USB_DAINTMSK.INEPO = 1 (control O IN endpoint)
USB_USB_DAINTMSK.OUTEPO = 1 (control 0 OUT endpoint)
USB_DOEPMSK.SETUP =1
USB_DOEPMSK.XFERCOMPL =1
USB_DIEPMSK.XFERCOMPL =1
* USB_DIEPMSK.TIMEOUTMSK =1
3. To transmit or receive data, the device must initialize more registers as specified in Device DMA/
Slave Mode Initialization (p. 259) .
4. Set up the Data FIFO RAM for each of the FIFOs
» Program the USB_GRXFSIZ Register, to be able to receive control OUT data and setup data. At
a minimum, this must be equal to 1 max packet size of control endpoint 0 + 2 DWORDSs (for the
status of the control OUT data packet) + 10 DWORDs (for setup packets).
« Program the Device IN Endpoint Transmit FIFO size register (depending on the FIFO number
chosen), to be able to transmit control IN data. At a minimum, this must be equal to 1 max packet
size of control endpoint 0.
5. Program the following fields in the endpoint-specific registers for control OUT endpoint O to receive
a SETUP packet
* USB_DOEPOTSIZ.SUPCNT = 3 (to receive up to 3 back-to-back SETUP packets)
e In DMA mode, USB_DOEPODMAADDR register with a memory address to store any SETUP
packets received

At this point, all initialization required to receive SETUP packets is done, except for enabling control
OUT endpoint 0 in DMA mode.

15.4.4.1.2 Initialization on Enumeration Completion

1. On the Enumeration Done interrupt (USB_GINTSTS.ENUMDONE, read the USB_DSTS register to
determine the enumeration speed.

2. Program the USB_DIEPOCTL.MPS field to set the maximum packet size. This step configures control
endpoint 0. The maximum packet size for a control endpoint depends on the enumeration speed.

3. In DMA mode, program the USB_DOEPOCTL register to enable control OUT endpoint 0, to receive
a SETUP packet.
» USB_DOEPOCTL.EPENA =1

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

At this point, the device is ready to receive SOF packets and is configured to perform control transfers
on control endpoint 0.

15.4.4.1.3 Initialization on SetAddress Command

This section describes what the application must do when it receives a SetAddress command ina SETUP
packet.

1. Program the USB_DCFG register with the device address received in the SetAddress command
2. Program the core to send out a status IN packet.

15.4.4.1.4 Initialization on SetConfiguration/Setinterface Command

This section describes what the application must do when it receives a SetConfiguration or Setinterface
command in a SETUP packet.

1. When a SetConfiguration command is received, the application must program the endpoint registers
to configure them with the characteristics of the valid endpoints in the new configuration.

2. When a Setinterface command is received, the application must program the endpoint registers of
the endpoints affected by this command.

3. Some endpoints that were active in the prior configuration or alternate setting are not valid in the new
configuration or alternate setting. These invalid endpoints must be deactivated.

4. For details on a particular endpoint’s activation or deactivation, see Endpoint Activation (p. 258)
and Endpoint Deactivation (p. 258) .

5. Unmask the interrupt for each active endpoint and mask the interrupts for all inactive endpoints in
the USB_USB_DAINTMSK register.

6. Set up the Data FIFO RAM for each FIFO. See Data FIFO RAM Allocation (p. 303) for more detalil.

7. After all required endpoints are configured, the application must program the core to send a status
IN packet.

At this point, the device core is configured to receive and transmit any type of data packet.
15.4.4.1.5 Endpoint Activation

This section describes the steps required to activate a device endpoint or to configure an existing device
endpoint to a new type.

1. Program the characteristics of the required endpoint into the following fields of the USB_DIEPx_CTL
register (for IN or bidirectional endpoints) or the USB_DOEPx_CTL register (for OUT or bidirectional
endpoints).

* Maximum Packet Size

« USB Active Endpoint=1

» Endpoint Start Data Toggle (for interrupt and bulk endpoints)
» Endpoint Type

* TXFIFO Number

2. Once the endpoint is activated, the core starts decoding the tokens addressed to that endpoint and
sends out a valid handshake for each valid token received for the endpoint.

15.4.4.1.6 Endpoint Deactivation
This section describes the steps required to deactivate an existing endpoint.

1. In the endpoint to be deactivated, clear the USB Active Endpoint bit in the USB_DIEPx_CTL
register (for IN or bidirectional endpoints) or the USB_DOEPx_CTL register (for OUT or bidirectional
endpoints).

2. Once the endpoint is deactivated, the core ignores tokens addressed to that endpoint, resulting in
a timeout on the USB.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

15.4.4.1.7 Device DMA/Slave Mode Initialization
The application must meed the following conditions to set up the device core to handle traffic.

* In Slave mode, USB_GINTMSK.NPTXFEMPMSK, and USB_GINTMSK.RXFLVLMSK must be unset.
* In DMA mode, the aforementioned interrupts must be masked.

15.4.4.1.8 Transfer Stop Process

When the core is operating as a device, use the following programing sequence if you want to stop any
transfers (because of an interrupt from the host, typically a reset).

15.4.4.1.8.1 Transfer Stop Programming Flow for IN Endpoints
Sequence of operations:

1. Disable the IN endpoint by programming USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS = 1.

2. Wait for the USB_DIEPx_INT.EPDISBLD interrupt, which indicates that the IN endpoint is completely
disabled. When the EPDISBLD interrupt is asserted, the core clears the following bits:
 USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS =0
* USB_DIEPOCTL/USB_DIEPx_CTL.EPENA =0

3. Flush the TX FIFO by programming the following bits:

* USB_GRSTCTL.TXFFLSH =1
* USB_GRSTCTL.TXFNUM = FIFO number specific to endpoint

4. The application can start polling till USB_GRSTCTL.TXFFLSH is cleared. When this bit is cleared, it

ensures that there is no data left in the TX FIFO.

15.4.4.1.8.2 Transfer Stop Programming Flow for OUT Endpoints
Sequence of operations:

1. Enable all OUT endpoints by setting USB_DOEPOCTL/USB_DOEPx_CTL.EPENA = 1.
2. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core,
according to the instructions in Setting the Global OUT NAK (p. 267). This ensures that data in the
RX FIFO is sent to the application successfully. Set USB_DCTL.USB_DCTL.SGOUTNAK = 1.
. Wait for the USB_GINTSTS.GOUTNAKEFF interrupt.
4. Disable all active OUT endpoints by programming the following register bits:
*+ USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =1
« USB_DOEPOCTL/USB_DOEPx _CTL.EPDIS=1
* USB_DOEPOCTL/USB_DOEPx_CTL.SNAK =1

5. Wait for the USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt for each OUT endpoint
programmed in the previous step. The USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt
indicates that the corresponding OUT endpoint is completely disabled. When the EPDISBLD interrupt
is asserted, the core clears the following bits:
« USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =0
 USB_DOEPOCTL/USB_DOEPx_CTL.EPDIS =0

w

Note
The application must not flush the Rx FIFO, as the Global OUT NAK effective interrupt
earlier ensures that there is no data left in the Rx FIFO.
15.4.4.2 Device Programming Operations

Table 15.2 (p. 260) provides links to the programming sequence for different USB transaction types.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

EZR

...the world's most energy friendly wireless MCUs

Table 15.2.

Device Mode IN SETUP ouT

Control

Slave Generic Non-Periodic OUT Data Transfers Generic Non-Isochronous
(Bulk and Control) IN in Slave and DMA OUT Data Transfers
Data Transfers Without Modes (p. 261) Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 284) Modes (p. 269)

DMA Generic Non-Periodic OUT Data Transfers Generic Non-Isochronous
(Bulk and Control) IN in Slave and DMA OUT Data Transfers
Data Transfers Without Modes (p. 261) Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 284) Modes (p. 269)

Bulk

Slave Generic Non-Periodic Generic Non-Isochronous
(Bulk and Control) IN OUT Data Transfers
Data Transfers Without Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 284) Modes (p. 269)

DMA Generic Non-Periodic Generic Non-Isochronous
(Bulk and Control) IN OUT Data Transfers
Data Transfers Without Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 284) Modes (p. 269)

Interrupt

Slave Generic Periodic Generic Non-Isochronous
IN (Interrupt and OUT Data Transfers
Isochronous) Data Without Thresholding
Transfers Without in DMA and Slave
Thresholding (p. 289) Modes (p. 269)
and Generic Periodic IN and Generic Interrupt
Data Transfers Without OUT Data Transfers
Thresholding Using Without Thresholding
the Periodic Transfer Using Periodic Transfer
Interrupt Feature (p. Interrupt Feature (p.
291) 273)

DMA Generic Periodic Generic Non-Isochronous
IN (Interrupt and OUT Data Transfers
Isochronous) Data Without Thresholding
Transfers Without in DMA and Slave
Thresholding (p. 289) Modes (p. 269)
and Generic Periodic IN and Generic Interrupt
Data Transfers Without OUT Data Transfers
Thresholding Using Without Thresholding
the Periodic Transfer Using Periodic Transfer
Interrupt Feature (p. Interrupt Feature (p.
291) 273)

Isochronous

Slave Generic Periodic Control Read Transfers
IN (Interrupt and (SETUP, Data IN, Status
Isochronous) Data OUT) (p. 264) and
Transfers Without Incomplete Isochronous
Thresholding (p. 289) OUT Data Transfers

2015-01-13 - EZR32LG Family - d0333_Rev0.90

www.Silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

in DMA and Slave
Modes (p. 277)

DMA Generic Periodic Control Read Transfers
IN (Interrupt and (SETUP, Data IN, Status
Isochronous) Data OUT) (p. 264) and
Transfers Without Incomplete Isochronous
Thresholding (p. 289) OUT Data Transfers
and Generic Periodic IN in DMA and Slave
Data Transfers Without Modes (p. 277)

Thresholding Using
the Periodic Transfer
Interrupt Feature (p.
291)

15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes

This section describes the internal data flow and application-level operations during data OUT transfers
and setup transactions.

15.4.4.2.1.1 Control Setup Transactions

This section describes how the core handles SETUP packets and the application’s sequence for handling
setup transactions. To initialize the core after power-on reset, the application must follow the sequence
in Overview: Programming the Core (p. 222). Before it can communicate with the host, it must initialize
an endpoint as described in Endpoint Initialization (p. 257) . See Packet Read from FIFO in Slave
Mode (p. 266) .

Application Requirements

1. To receive a SETUP packet, the USB_DOEPx_TSIZ.SUPCNT field in a control OUT endpoint must
be programmed to a non-zero value. When the application programs the SUPCNT field to a non-
zero value, the core receives SETUP packets and writes them to the receive FIFO, irrespective of
the USB_DOEPx_CTL.NAK status and USB_DOEPx_CTL.EPENA bit setting. The SUPCNT field is
decremented every time the control endpoint receives a SETUP packet. If the SUPCNT field is not
programmed to a proper value before receiving a SETUP packet, the core still receives the SETUP
packet and decrements the SUPCNT field, but the application possibly is not be able to determine
the correct number of SETUP packets received in the Setup stage of a control transfer.

* USB_DOEPx_TSIZ.SUPCNT =3

2. In DMA mode, the OUT endpoint must also be enabled, to transfer the received SETUP packet data
from the internal receive FIFO to the external memory.

« USB_DOEPx_CTL.EPENA =1

3. The application must always allocate some extra space in the Receive Data FIFO, to be able to
receive up to three SETUP packets on a control endpoint.

* The space to be Reserved is (4 * n) + 6 DWORDs, where n is the number of control endpoints
supported by the device. Three DWORDs are required for the first SETUP packet, 1 DWORD is
required for the Setup Stage Done DWORD, and 6 DWORDSs are required to store two extra SETUP
packets among all control endpoints.

» 3 DWORDs per SETUP packet are required to store 8 bytes of SETUP data and 4 bytes of SETUP
status (Setup Packet Pattern). The core reserves this space in the receive data

» FIFO to write SETUP data only, and never uses this space for data packets.

4. In Slave mode, the application must read the 2 DWORDs of the SETUP packet from the receive FIFO.
In DMA mode, the core writes the 2 DWORDs of SETUP data to the memory.

5. The application must read and discard the Setup Stage Done DWORD from the receive FIFO.

Internal Data Flow

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

— t ...the world's most energy friendly wireless MCUs

1.

When a SETUP packet is received, the core writes the received data to the receive FIFO, without

checking for available space in the receive FIFO and irrespective of the endpoint's NAK and Stall

bit settings.

» The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which
the SETUP packet was received.

. For every SETUP packet received on the USB, 3 DWORDs of data is written to the receive FIFO,

and the SUPCNT field is decremented by 1.

» The first DWORD contains control information used internally by the core
» The second DWORD contains the first 4 bytes of the SETUP command

» The third DWORD contains the last 4 bytes of the SETUP command

. When the Setup stage changes to a Data IN/OUT stage, the core writes an entry (Setup Stage Done

DWORD) to the receive FIFO, indicating the completion of the Setup stage.

. On the AHB side, SETUP packets are emptied either by the DMA or the application. In DMA

mode, the SETUP packets (2 DWORDSs) are written to the memory location programmed in the
USB_DOEPx_DMAADDR register, only if the endpoint is enabled. If the endpoint is not enabled, the
data remains in the receive FIFO until the enable bit is set.

. When either the DMA or the application pops the Setup Stage Done DWORD from the receive FIFO,

the core interrupts the application with a USB_DOEPx_INT.SETUP interrupt, indicating it can process
the received SETUP packet.

» The core clears the endpoint enable bit for control OUT endpoints.

Application Programming Sequence

1. Program the USB_DOEPx_TSIZ register.
« USB_DOEPx_TSIZ.SUPCNT =3

2. In DMA mode, program the USB_DOEPx_DMAADDR register and USB_DOEPx_CTL register with
the endpoint characteristics and set the Endpoint Enable bit (USB_DOEPx_CTL.EPENA).

* Endpoint Enable =1

3. In Slave mode, wait for the USB_GINTSTS.RXFLVL interrupt and empty the data packets from the
receive FIFO, as explained in Packet Read from FIFO in Slave Mode (p. 266) . This step can be
repeated many times.

4. Assertion of the USB_DOEPx_INT.SETUP interrupt marks a successful completion of the SETUP

Data Transfer.

* Onthisinterrupt, the application must read the USB_DOEPXx_TSIZ register to determine the number
of SETUP packets received and process the last received SETUP packet.

* In DMA mode, the application must also determine if the interrupt bit
USB_DOEPx_INT.BACK2BACKSETUP is set. This bit is set if the core has received more
than three back-to-back SETUP packets. If this is the case, the application must ignore the
USB_DOEPx_TSIZ.SUPCNT value and use the USB_DOEPx_DMAADDR directly to read out the
last SETUP packet received. USB_DOEPx_DMAADDR-8 provides the pointer to the last valid
SETUP data.

Note

If the application has not enabled EPO before the host sends the SETUP packet, the core
ACKs the SETUP packet and stores it in the FIFO, but does not write to the memory until
EPO is enabled. When the application enables the EPO (first enable) and clears the NAK

bit at the same time the Host sends DATA OUT, the DATA OUT is stored in the RxFIFO.
The OTG core then writes the setup data to the memory and disables the endpoint. Though
the application expects a Transfer Complete interrupt for the Data OUT phase, this does
not occur, because the SETUP packet, rather than the DATA OUT packet, enables EPO the
first time. Thus, the DATA OUT packet is still in the RXFIFO until the application re-enables
EPO. The application must enable EPO one more time for the core to process the DATA
OUT packet.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

Figure 15.19 (p. 263) charts this flow.

Figure 15.19. Processing a SETUP Packet

Wait for
USB DOEPx_INT.SETUP

Back2Back Setup

IO Interrupt bit set 2 \IS
rem_supcnt = Setup_addr =
Rd_Reg(USB_DOEPx_TSIZ) Rd_Reg(USB_DOEPx_DMA
y y
setup_cmd[31:0] = mem[4-2 * rem_supcnt] setup_cmd[31:0] = mem|[setup_addr- 8]
setup_cmd[63:32] = mem[5-2 * rem_supcnt] setup_cmd[63:32] = mem[setup_addr- 4]

A

Find setup cmd type

Write
2-stage
Y
setup_np_in_pkt setup_np_in_pkt rcv_out_pkt
Data IN phase Sata IN phase Data OUT phase

15.4.4.2.1.2 Handling More Than Three Back-to-Back SETUP Packets

Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more
than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0 specification
does not limit the number of back-to-back SETUP packets a host can send to the same endpoint.
When this condition occurs, the core generates an interrupt (USB_DOEPx_INT.BACK2BACKSETUP).
In DMA mode, the core also rewinds the DMA address for that endpoint (USB_DOEPx_DMAADDR)
and overwrites the first SETUP packet in system memory with the fourth, second with the fifth, and so
on. If the BACK2BACKSETUP interrupt is asserted, the application must read the OUT endpoint DMA
register (USB_DOEPx_DMAADDR) to determine the final SETUP data in system memory.

In DMA mode, the application can mask the BACK2BACKSETUP interrupt, but after receiving the
DOEPINT.SETUP interrupt, the application can read the DOEPINT.BACK2BACKSETUP interrupt bit.
In Slave mode, the application can use the USB_GINTSTS.RXFLVL interrupt to read out the SETUP
packets from the FIFO whenever the core receives the SETUP packet.

15.4.4.2.2 Control Transfers

This section describes the various types of control transfers.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

15.4.4.2.2.1 Control Write Transfers (SETUP, Data OUT, Status IN)

This section describes control write transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet
has been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
261) for more details. At the end of the Setup stage, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

. If the last SETUP packet received before the assertion of the SETUP interrupt indicates a data OUT

phase, program the core to perform a control OUT transfer as explained in Generic Non-Isochronous
OUT Data Transfers Without Thresholding in DMA and Slave Modes (p. 269) .

In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive a
control OUT data packet to a different memory location.

. In a single OUT data transfer on control endpoint 0, the application can receive up to 64 bytes. If the

application is expecting more than 64 bytes in the Data OUT stage, the application must re-enable
the endpoint to receive another 64 bytes, and must continue to do so until it has received all the data
in the Data stage.

. Assertion of the USB_DOEPx_INT.Transfer Completed interrupt on the last data OUT transfer

indicates the completion of the data OUT phase of the control transfer.

. On completion of the data OUT phase, the application must do the following.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint as explained in OUT Data Transfers in Slave and DMA Modes (p. 261) .
« USB_DOEPx_CTL.EPENA =1

» To execute the received Setup command, the application must program the required registers in
the core. This step is optional, based on the type of Setup command received.

. For the status IN phase, the application must program the core as described in Generic Non-Periodic

(Bulk and Control) IN Data Transfers Without Thresholding in DMA and Slave Modgp. 284) to
perform a data IN transfer.

. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates completion of the status IN phase

of the control transfer.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on

the endpoint, marking the completion of the control write transfer.

15.4.4.2.2.2 Control Read Transfers (SETUP, Data IN, Status OUT)

This section describes control read transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet
has been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
261) for more details. At the end of the Setup stage, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

. If the last SETUP packet received before the assertion of the SETUP interrupt indicates a data IN

phase, program the core to perform a control IN transfer as explained in Generic Non-Periodic (Bulk
and Control) IN Data Transfers Without Thresholding in DMA and Slave Mode (p. 284) .

. On a single IN data transfer on control endpoint 0, the application can transmit up to 64 bytes. To

transmit more than 64 bytes in the Data IN stage, the application must re-enable the endpoint to
transmit another 64 bytes, and must continue to do so, until it has transmitted all the data in the Data
stage.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected

for every IN transfer on the endpoint.

. The USB_DIEPx_INT.XFERCOMPL interrupt on the last IN data transfer marks the completion of the

control transfer’s Data stage.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

_— ’E ...the world's most energy friendly wireless MCUs

6.

7.

To perform a data OUT transfer in the status OUT phase, the application must program the core as

described in OUT Data Transfers in Slave and DMA Modes (p. 261) .

« The application must program the USB_DCFG.NZSTSOUTHSHK handshake field to a proper
setting before transmitting an data OUT transfer for the Status stage.

* In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive
the control OUT data packet to a different memory location.

Assertion of the USB_DOEPx_INT.XFERCOMPL interrupt indicates completion of the status OUT

phase of the control transfer. This marks the successful completion of the control read transfer.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint as explained in OUT Data Transfers in Slave and DMA Modes (p. 261) .

« USB_DOEPx_CTL.EPENA =1

15.4.4.2.2.3 Two-Stage Control Transfers (SETUP/Status IN)

This section describes two-stage control transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP interrupt indicates that a valid SETUP packet has
been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
261) for more detail. To receive the next SETUP packet, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 at the end of the Setup stage.

. Decode the last SETUP packet received before the assertion of the SETUP interrupt. If the packet

indicates a two-stage control command, the application must do the following.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint. See OUT Data Transfers in Slave and DMA Modes (p. 261) for details.
+ USB_DOEPx_CTL.EPENA =1

» Depending on the type of Setup command received, the application can be required to program
registers in the core to execute the received Setup command.

. For the status IN phase, the application must program the core described in Generic Non-Periodic

(Bulk and Control) IN Data Transfers Without Thresholding in DMA and Slave Modgp. 284) to
perform a data IN transfer.

. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates the completion of the status IN

phase of the control transfer.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on

the endpoint, marking the completion of the two-stage control transfer.

Example: Two-Stage Control Transfer

These notes refer to Figure 15.20 (p. 266) .

1.

2.

SETUP packet #1 is received on the USB and is written to the receive FIFO, and the core responds
with an ACK handshake. This handshake is lost and the host detects a timeout.

The SETUP packet in the receive FIFO results in a USB_GINTSTS.RXFLVL interrupt to the
application, causing the application to empty the receive FIFO.

. SETUP packet #2 on the USB is written to the receive FIFO, and the core responds with an ACK

handshake.

. The SETUP packet in the receive FIFO sends the application the USB_GINTSTS.RXFLVL interrupt

and the application empties the receive FIFO.

. After the second SETUP packet, the host sends a control IN token for the status phase. The core

issues a NAK response to this token, and writes a Setup Stage Done entry to the receive FIFO. This
entry resultsina USB_GINTSTS.RXFLVL interrupt to the application, which empties the receive FIFO.
After reading out the Setup Stage Done DWORD, the core asserts the USB_DOEPx_INT.SETUP
packet interrupt to the application.

. On this interrupt, the application processes SETUP Packet #2, decodes it to be a two-stage control

command, and clears the control IN NAK bit.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

= L F ...the world's most energy friendly wireless MCUs

« USB_DIEPx_CTL.CNAK =1

7. When the application clears the IN NAK bit, the core interrupts the application with a
USB_DIEPx_INT.INTKNTXFEMP. On this interrupt, the application enables the control IN endpoint
with a USB_DIEPx_TSIZ.XFERSIZE of 0 and a USB_DIEPx_TSIZ.PKTCNT of 1. This results in a
zero-length data packet for the status IN token on the USB.

8. At the end of the status IN phase, the core interrupts the application with a
USB_DIEPx_INT.XFERCOMPL interrupt.

Figure 15.20. Two-Stage Control Transfer

Host USB Device Application
setup_xact I Ctk IN NAK=1Ctk OUT NAK=1

3

setup data RXFLWVL . .
setup_xact 2 INTR idle until infr
|
\
: IN— 4 ¥ setup data | Ircv_out_datal |

Ry Control IN NAK 1
/’V’zpl/‘ Control,OUT NAIK 1

I idle until in

| data
AK: setup dat
e,

\
A setup dong

setup dat2a

| I
1 I
| I
! I 2,
| %
" : setup datd . | rcv_out_datal |
I L]
] ° | %
A i | idte until infr |
|
1 I
: : | rcv_out_datal |
Sg

(| Tup
| | Intr
i ! | | idte untit injr |
|
L | /@

i I

status xact 2 | Clear IN - -
: N2 . proc s:;up pki
NAK N EEp NAK

T t :
! | y/l I setup_in_n ki |
L ! 1s data rd RIN_NP_Pp XFERSIZE = 0 bytes
i IN(STATUS s PKTCNT = 1

EPENA =1

status xact 2
G oyes |

I
I
I
ACK
| XA
| | RovR.
! | INTR | idte until infr |

15.4.4.2.2.4 Packet Read from FIFO in Slave Mode

This section describes how to read packets (OUT data and SETUP packets) from the receive FIFO in
Slave mode.

1. On catching a USB_GINTSTS.RXFLVL interrupt, the application must read the Receive Status Pop
register (USB_GRXSTSP).

2. The application can mask the USB_GINTSTS.RXFLVL interrupt by writing to
USB_GINTMSK.RXFLVL = 0, until it has read the packet from the receive FIFO.

3. If the received packet’s byte count is not 0, the byte count amount of data is popped from the receive
Data FIFO and stored in memory. If the received packet byte count is 0, no data is popped from the
Receive Data FIFO.

4. The receive FIFO’s packet status readout indicates one of the following.

5. Global OUT NAK Pattern: PKTSTS = Global OUT NAK, BCNT = 0x000, EPNUM = Dont Care (0x0),
DPID = Dont Care (0b00). This data indicates that the global OUT NAK bit has taken effect.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L E ...the world's most energy friendly wireless MCUs

a. SETUP Packet Pattern: PKTSTS = SETUP, BCNT = 0x008, EPNUM = Control EP Num,
DPID = DO0. This data indicates that a SETUP packet for the specified endpoint is now available
for reading from the receive FIFO.

b. Setup Stage Done Pattern: PKTSTS = Setup Stage Done, BCNT = 0x0, EPNUM = Control EP
Num, DPID = Don’t Care (0b00). This data indicates that the Setup stage for the specified endpoint
has completed and the Data stage has started. After this entry is popped from the receive FIFO,
the core asserts a Setup interrupt on the specified control OUT endpoint.

c. Data OUT Packet Pattern: PKTSTS = DataOUT, BCNT = size of the Received data OUT packet,
EPNUM = EPNum on which the packet was received, DPID = Actual Data PID.

d. Data Transfer Completed Pattern: PKTSTS = Data OUT Transfer Done, BCNT = 0x0,
EPNUM = OUT EP Num on which the data transfer is complete, DPID = Dont Care (0b00). This
data indicates that a OUT data transfer for the specified OUT endpoint has completed. After this
entry is popped from the receive FIFO, the core asserts a Transfer Completed interrupt on the
specified OUT endpoint.

The encoding for the PKTSTS is listed in Section 15.6 (p. 325) .

6. After the data payload is popped from the receive FIFO, the USB_GINTSTS.RXFLVL interrupt must
be unmasked.

7. Steps 1-5 are repeated every time the application detects assertion of the interrupt line due to
USB_GINTSTS.RXFLVL. Reading an empty receive FIFO can result in undefined core behavior.

Figure 15.21 (p. 267) provides a flow chart of this procedure.

Figure 15.21. Receive FIFO Packet Read in Slave Mode

A 4
wait until USB_GINTSTS.RXFLVL

h 4
rd_data = rd_reg(USB_RXSTSP)

rd_data.BCNT = O

rcv_out_pkt()

N
dword_cnt =
packet mem[0:dword_cnt-1] = BCNT[11:2] +
store in rd_rxfifo(rd_data.EPNUM, (BCNT[1] | BCNT[O])
memory dword_cnt)

15.4.4.2.2.5 Setting the Global OUT NAK

Internal Data Flow

1. When the application sets the Global OUT NAK (USB_DCTL.SGOUTNAK), the core stops writing
data, except SETUP packets, to the receive FIFO. Irrespective of the space availability in the receive
FIFO, non-isochronous OUT tokens receive a NAK handshake response, and the core ignores
isochronous OUT data packets

2. The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve
enough receive FIFO space to write this data pattern. See Data FIFO RAM Allocation (p. 303) .

3. When either the core (in DMA mode) or the application (in Slave mode) pops the Global OUT NAK
pattern DWORD from the receive FIFO, the core sets the USB_GINTSTS.GOUTNAKEFF interrupt.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L ’ ...the world's most energy friendly wireless MCUs

4. Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode.
The application can clear this interrupt by clearing the USB_DCTL.SGOUTNAK bit.

Application Programming Sequence

1. To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK
bit by programming the following field.
+ USB_DCTL.SGOUTNAK =1

2. Wait for the assertion of the interrupt USB_GINTSTS.GOUTNAKEFF. When asserted, this interrupt
indicates that the core has stopped receiving any type of data except SETUP packets.

3. The application can receive valid OUT packets after it has set USB_DCTL.SGOUTNAK and before
the core asserts the USB_GINTSTS.GOUTNAKEFF interrupt.

4. The application can temporarily = mask this interrupt by writing to the
USB_GINTMSK.GOUTNAKEFFMSK bit.
* USB_GINTMSK.GINNAKEFFMSK =0

5. Whenever the application is ready to exit the Global OUT NAK mode, it must clear the
USB_DCTL.SGOUTNAK bit. This also clears the USB_GINTSTS.GOUTNAKEFF interrupt.
*+ USB_DCTL.CGOUTNAK =1

6. If the application has masked this interrupt earlier, it must be unmasked as follows:
* USB_GINTMSK.GOUTNAKEFFMSK =1

15.4.4.2.2.6 Disabling an OUT Endpoint
The application must use this sequence to disable an OUT endpoint that it has enabled.
Application Programming Sequence

1. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core,
as described in Setting the Global OUT NAK (p. 267) .
+ USB_DCTL.SGOUTNAK =1
* Wait for the USB_GINTSTS.GOUTNAKEFF interrupt

2. Disable the required OUT endpoint by programming the following fields.
« USB DOEPx CTL.EPDIS=1
+ USB_DOEPx_CTL.SNAK =1

3. Wait for the USB_DOEPx_INT.EPDISBLD interrupt, which indicates that the OUT endpoint is
completely disabled. When the EPDISBLD interrupt is asserted, the core also clears the following bits.
» USB_DOEPx_CTL.EPDIS =0
« USB_DOEPX_CTL.EPENA =0

4. The application must clear the Global OUT NAK bit to start receiving data from other non-disabled
OUT endpoints.
+ USB_DCTL.SGOUTNAK =0

15.4.4.2.2.7 Stalling a Non-Isochronous OUT Endpoint
This section describes how the application can stall a non-isochronous endpoint.

1. Put the core in the Global OUT NAK mode, as described in Setting the Global OUT NAK (p. 267) .
2. Disable the required endpoint, as described in Section 15.4.4.2.2.6 (p. 268) .
« When disabling the endpoint, instead of setting the USB_DOEPx_CTL.SNAK bit, set
USB_DOEPx_CTL.STALL =1.
» The Stall bit always takes precedence over the NAK bit.

3. When the application is ready to end the STALL handshake for the endpoint, the
USB DOEPx_CTL.STALL bit must be cleared.

2015-01-13 - EZR32LG Family - d0333_Rev0.90 www.silabs.com

L4 ’r ...the world's most energy friendly wireless MCUs

4. If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or
ClearFeature.Endpoint Halt command, the Stall bit must be set or cleared before the application sets
up the Status stage transfer on the control endpoint.

15.4.4.2.2.8 Generic Non-lsochronous OUT Data Transfers in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 222). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 257) . See Packet Read from FIFO in Slave Mode (p. 266) .

This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt).
Application Requirements

1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to
accommodate all data to be received as part of the OUT transfer, then program that buffer’s size and
start address (in DMA mode) in the endpoint-specific registers.

1. For OUT transfers, the Transfer Size field in the endpoint’s Transfer Size register must be a multiple
of the maximum packet size of the endpoint, adjusted to the DWORD boundary.

o

if (mps[epnum nod 4) ==
transfer size[epnum = n * (nps[epnum) //Dword Aligned
el se

transfer size[epnum = n * (nps[epnum + 4 - (nps[epnun] nod 4)) //Non Dword Aligned

packet count[epnun] = n
n>0

2. In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD
boundary. If the maximum packet size of the endpoint is not a multiple of 4, the core inserts byte pads
at end of a maximum-packet-size packet up to the end of the DWORD.

3. On any OUT endpoint interrupt, the application must read the endpoint’'s Transfer Size register to
calculate the size of the payload in the